Answer:A rational number is such that when you multiply it by 5/2 and add 2/3 to the product you get -7/12 . What is the number.
Step-by-step explanation:Let p/q (q ≠ 0) denote the rational number. Multiplying it by 5/2 gives (p/q)(5/2). Add 2/3 to the product and we get (p/q)(5/2) + 2/3 . The result is given to be -7/12.
∴ (p/q)(5/2) + 2/3 = -7/12 …………………………..……………………………………..(1)
Transposing 2/3 to right-hand-side and changing the sign to negative,
(p/q)(5/2) = -2/3 -7/12 = -(2/3 + 7/12) =- (2 x 4 + 7)/12 (Taking L.C.M.)
Or, (p/q)(5/2) = -(8+7)/12 = - 15/12
Multiplying both sides by 2/5,
(p/q)(5/2) x (2/5) = -15/12 . 2/5 = -(3x5)/(3x4) . 2/5 =- 5/4 .2/5
Since 2/5 is the multiplicative inverse of 5/2, 5/2 x 2/5 = 1 and we obtain
(p/q).1 = -1/4 . 2/1 = -1/2
⇒ p/q = -1/2 which is a negative rational number in which p = 1 and q = 2 ≠ 0 .
∴ the rational number = -1/2
7 times 48 is 336
7 times 47 is 329
332/7= 47.4
7/332=.021
Answer:
it would be 5
Step-by-step explanation:
The first is the correct
Δ ZYB ≈ Δ OWR by SSS
because:
ZB = OR = 5
ZY = OW = 3
YB = WR = 5.5
The denominator of the first term is a difference of squares, such that
4<em>a</em> ² - <em>b</em> ² = (2<em>a</em>)² - <em>b</em> ² = (2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>)
So you can write the fractions as
(4<em>a</em> ² + <em>b</em> ²)/((2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>)) - (2<em>a</em> - <em>b</em>)/(2<em>a</em> + <em>b</em>)
Multiply through the second fraction by 2<em>a</em> - <em>b</em> to get a common denominator:
(4<em>a</em> ² + <em>b</em> ²)/((2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>)) - (2<em>a</em> - <em>b</em>)²/((2<em>a</em> + <em>b</em>) (2<em>a</em> - <em>b</em>))
((4<em>a</em> ² + <em>b</em> ²) - (2<em>a</em> - <em>b</em>)²) / ((2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>))
Expand the numerator:
(4<em>a</em> ² + <em>b</em> ²) - (2<em>a</em> - <em>b</em>)²
(4<em>a</em> ² + <em>b</em> ²) - (4<em>a</em> ² - 4<em>ab</em> + <em>b</em> ²)
4<em>ab</em>
<em />
So the original expression reduces to
4<em>ab</em> / ((2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>))
or
4<em>ab</em> / (4<em>a</em> ² - <em>b</em> ²)
upon condensing the denominator again.