Answer:
the blue shopping cart.
Explanation:
The blue shopping cart doesnt have to worry about running someone over in the front. The red one does, so it slows down more.
Answer:
A
Explanation:
Iron and gadlinium are both very easily made into magnetic substances. Cobalt is also capable of being magnetized. Aluminum, put in an alloy, can make a magnetic substance, but
Aluminum by itself is not able to be magnetized.
Answer:
Explanation:
In the x direction the force will be
½(-w₀)L/2 = -¼w₀L
acting ⅔(L/2) = L/3 below the x axis.
In the y direction the force will be
½(-w₀)L + ½w₀L/2 = -¼w₀L
the magnitude of the resultant will be
F = w₀L √((-¼)² + (-¼)²) = w₀L√⅛
in the direction
θ = arctan(-¼w₀L / -¼w₀L) = 225°
to find the distance, we balance moments
(w₀L√⅛)[d] = ½(w₀)L[⅔L] + ¼w₀L[⅔L/2] - ¼w₀L[L - ⅓L/2]
(√⅛)[d] = ½ [⅔L] + ¼ [⅔L/2] - ¼ [L - ⅓L/2]
(√⅛)[d] = ½[⅔L] + ¼[⅔L/2] - ¼[L - ⅓L/2]
(√⅛)[d] = ⅓L + ⅟₁₂L - ¼L + ⅟₂₄L
(√⅛)[d] = 5L/24
d = 5L/24 / (√⅛)
d = 5√⅛L/3
The similarities and the differences between gravitational and electric force are listed below
Explanation:
- The magnitude of the gravitational force between two objects is given by Newton's law of gravitation:
where
is the gravitational constant
are the masses of the two objects
r is the separation between them
- Coloumb's law gives instead the strength of the electrostatic force between two charged objects, which is
where:
is the Coulomb's constant
are the two charges
r is the separation between the two charges
By comparing the two equations, we find the following similarities:
- Both the forces are inversely proportional to the square of the distance between the two objects,
- Both the forces are proportional to the product between the "main quantity" of each force, which is the mass for the gravitational force () and the charge for the electric force (
Instead, we have the following differences:
- The gravitational force is always attractive, since the sign of is always positive, while the electric force can be either attractive or repulsive, since the sign of can be either positive or negative
- The value of the gravitational costant G is much smaller than the value of the Coulomb's constant, so the gravitational force is much weaker than the electric force
Learn more about gravitational force and electric force:
brainly.com/question/1724648
brainly.com/question/12785992
brainly.com/question/8960054
brainly.com/question/4273177
#LearnwithBrainly