Answer:
v = 8.72 m/s
Explanation:
To find the speed of the raindrop joint to the mosquito, you take into account the momentum conservation law for an inelastic collision. Before the collision the total momentum of raindrop and mosquito must be equal to the total momentum of both raindrop and mosquito after the collision.
(1)
v1: speed of the mosquito before the collision= 0 m/s (it is at rest)
v2: speed of the raindrop before the collision = 8.9 m/s
m1: mass of the mosquito
m2: mass of the raindrop = 50m1 (50 time more massive that the mosquito)
v: speed of both raindrop and mosquito after the collision
You solve the equation (1) for v and replace the values of the rest of the parameters:

hence, after the inelastic collision the speed of the raindrop andmosquito is 8.72 m/s
Answer:
<h2>2.4</h2>
Explanation:
<h2><em>Hope it help mark as Brainlist</em></h2>
As the length increases, resistance increases, as a result current decreases.
If the bulb is in series with something else, then . . .
-- The brightness of the bulb depends on the <em>other</em> device in the circuit.
-- If the other device is designed to use <em>less power</em> than the bulb, then the
other device gets <em>more power</em> than the bulb gets.
-- If the other device is designed to use <em>more power </em>than the bulb, then the
other device gets <em>less power</em> than the bulb gets.
-- If the other device is removed from the circuit, then the bulb doesn't light at all.
This description of the often-screwy behavior of a series circuit may partly explain
why the electric service in your home is not a series circuit.
Answer:
a = 1.05m.s²
Explanation:
Fnet = m×a
Fapplied - friction = m×a
1172 - 962 = 200 × a
210 = 200a
a = 1.05