1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Olin [163]
2 years ago
6

What is the independent, and dependent variable? what should songs bobs conclusion be?

Physics
1 answer:
Fudgin [204]2 years ago
6 0
The dependent variable is the slime on Gary's shell, because it's depending on other factors (independent factors).
You might be interested in
Why is the perfect mechine is not possible in the real life?​
Vinvika [58]

Answer:

Because the mechanical advantage of the machine is affected by friction and weight but velocity ratio is not. So, mechanical advantage is less than velocity rate. Thus, the machine's efficiency is less than 100% and can't be a perfect machine

3 0
2 years ago
Froghopper insects have a typical mass of around 11.3 mg and can jump to a height of 58.8 cm. The takeoff velocity is achieved a
allochka39001 [22]

Answer:

2874.33 m/s²

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s²

v^2-u^2=2as\\\Rightarrow a=\frac{v^2-u^2}{2s}\\\Rightarrow a=\frac{v^2-0^2}{2\times h}\\\Rightarrow v^2=2ah\ m/s

Now H-h = 0.588 - 0.002 = 0.586 m

The final velocity will be the initial velocity

v^2-u^2=2as\\\Rightarrow 0^2-u^2=2gs\\\Rightarrow -2ah=2\times g(H-h)\\\Rightarrow -2a0.002=2\times g0.586\\\Rightarrow a=-\frac{0.586\times -9.81}{0.002}\\\Rightarrow a=2874.33\ m/s^2

Acceleration of the frog is 2874.33 m/s²

6 0
3 years ago
A point charge q is located at the center of a spherical shell of radius a that has a charge −q uniformly distributed on its sur
muminat

Answer:

a) E = 0

b) E =  \dfrac{k_e \cdot q}{ r^2 }

Explanation:

The electric field for all points outside the spherical shell is given as follows;

a) \phi_E = \oint E \cdot  dA =  \dfrac{\Sigma q_{enclosed}}{\varepsilon _{0}}

From which we have;

E \cdot  A =  \dfrac{{\Sigma Q}}{\varepsilon _{0}} = \dfrac{+q + (-q)}{\varepsilon _{0}}  = \dfrac{0}{\varepsilon _{0}} = 0

E = 0/A = 0

E = 0

b) \phi_E = \oint E \cdot  dA =  \dfrac{\Sigma q_{enclosed}}{\varepsilon _{0}}

E \cdot  A  = \dfrac{+q }{\varepsilon _{0}}

E  = \dfrac{+q }{\varepsilon _{0} \cdot A} = \dfrac{+q }{\varepsilon _{0} \cdot 4 \cdot \pi \cdot r^2}

By Gauss theorem, we have;

E\oint dS =  \dfrac{q}{\varepsilon _{0}}

Therefore, we get;

E \cdot (4 \cdot \pi \cdot r^2) =  \dfrac{q}{\varepsilon _{0}}

The electrical field outside the spherical shell

E =  \dfrac{q}{\varepsilon _{0} \cdot (4 \cdot \pi \cdot r^2) }= \dfrac{q}{4 \cdot \pi \cdot \varepsilon _{0} \cdot r^2 }=  \dfrac{q}{(4 \cdot \pi \cdot \varepsilon _{0} )\cdot r^2 }

k_e=  \dfrac{1}{(4 \cdot \pi \cdot \varepsilon _{0} ) }

Therefore, we have;

E =  \dfrac{k_e \cdot q}{ r^2 }

5 0
2 years ago
Which would have the longer orbital period: a moon 1 million km from the center of Jupiter, or a moon 1 million km from the cent
Harman [31]

Answer:

earth

Explanation:

The formula for the orbital period of the moon is given by

T = 2\pi \sqrt{\frac{r}{g}}

As the time period is inversely proportional to the square root of the acceleration due to gravity of the planet.

As the value of acceleration due to gravity on Jupiter is more than the earth, so the period of moon around the earth is large as compared to the period of the moon around the Jupiter when the distance is same.

5 0
3 years ago
A particular form of electromagnetic radiation has a frequency of 5.42x10^15 Hz. What is the wavelength is nanometers? meters?
zubka84 [21]
Electromagnetic radiation are represented in waves. Each type of wave has a certain shape and length. The distance between two peaks in a wave is called the wavelength. This value is equal to the speed of light divided by the frequency.
Wavelength = c/f
Wavelength = 3x10^8 / <span>5.42x10^15
</span><span>Wavelength = 5.54 x 10^-8 m = 55.35 nm</span>
4 0
3 years ago
Other questions:
  • When the man inside the treadmill steps up, what force pulls home back? In what direction does this force move him?
    10·1 answer
  • Two satellites are orbiting earth at different altitudes. Which satellite orbits at a higher speed v around earth?
    6·1 answer
  • Identify two types of nuclear reactions in which the equations E= mc^2 applies.
    5·1 answer
  • 1. Someone fires a 0.04 kg bullet at a block of wood that has a mass of 0.5 kg. (The block of wood is sitting on a frictionless
    11·2 answers
  • Flowchart symbols
    11·1 answer
  • A football is kicked into the air from an initial height of 4 feet. The height, in feet, of the football above the ground is giv
    8·2 answers
  • Describe the energy conversion in each of these scenarios: a plant using photosynthesis to make food, using a battery-powered fl
    13·1 answer
  • What is the difference between circular and rotatory motion?​
    13·2 answers
  • Define measurement with 10 points
    14·1 answer
  • Are you a negro can i call you one
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!