Answer:
<h2>0.056 W</h2>
Explanation:

From ohms law we know that
Given data
P1 = 0.5 Watt
P2 = ?
V1= 3 Volts
V2= 1 Volt
Thus we can solve for the power dissipated as follows


<em>The resistor will dissipate 0.056 Watt</em>
In electricity, the most famous and basic equation is the Ohm's Law which relates the parameters voltage, current and resistance. One form of this law as written in equation is V = IR, where V is the voltage in volts, I is the current in amperes and R is the resistance in ohms. These parameters depends in the arrangements, whether it's series or parallel.
In a series connection, the voltage is greater across a high-resistance resistor. Therefore, the voltage is much greater for the 20-ohm resistor. However,if it is a parallel circuit, the voltage is just the same for both resistors.
Answer:
1/4 times your earth's weight
Explanation:
assuming the Mass of earth = M
Radius of earth = R
∴ the mass of the planet= 4M
the radius of the planet = 4R
gravitational force of earth is given as = 
where G is the gravitational constant
Gravitational force of the planet = 
=
=
recall, gravitational force of earth is given as = 
∴Gravitational force of planet = 1/4 times the gravitational force of the earth
you would weigh 1/4 times your earth's weight
Answer: Light could be thought of as a stream of tiny particles discharged by luminous objects that travel in straight paths.
Explanation:
We can define "radiation" as the transmision of energy trough waves or particles.
Particularly, light is a form of electromagnetic radiation, so the "tiny particles" of light are discharged by a radiating object, particularly we can be more explicit and call it a luminous object, in this way we are being specific about the nature of the radiation of the object.
I'm pretty sure its Venus!!!