Answer:
To the right
Explanation:
CH₃OH(g) + heat <=> CO(g) + 2H₂(g)
According to Le Chatelier's principle, a decrease in pressure will shift the equilibrium position to the side where there is a higher volume.
From the balanced equation above,
Volume of reactant = 1
Volume of product = 1 + 2 = 3
From the above, we can see that the volume of the gasous product is higher than the volume of the gasous reactant.
Therefore, a decrease in the pressure of the system will shift the equilibrium position to the right.
Answer: The temperature of the gas at a pressure of 0.987 atm and volume of 144mL is
Explanation:
The combined gas equation is,
where,
= initial pressure of gas = 0.947 atm
= final pressure of gas = 0.987 atm
= initial volume of gas = 150 ml
= final volume of gas = 144 ml
= initial temperature of gas =
= final temperature of gas = ?
Now put all the given values in the above equation, we get:
The temperature of the gas at a pressure of 0.987 atm and volume of 144mL is
They achieve stable structures by sharing their single, unpaired electron.
By considering the reaction equation is:
5Br(aq)+BrO3(aq)+6H(aq)= 3Br2(aq)+3H2O(l)
when the average rate of consumption of Br = 1.86x10^-4 m/s
So from the reaction equation
5Br → 3Br2 when we measure the average rate of formation (X) during the same interval So,
∴ 1.86x10^-4/5 = X / 3
∴X = 1.1 x 10^-4 m/s
∴the average rate of formation of Br2 = 1.1x10^-4 m/s
Gravitational <span>force between them</span>