<h3>pressure = force / area</h3>
<h3>force = 84 N</h3><h3>pressure = 6 × 10 - 5 = 55 m2</h3>
<h3>pressure = 84 / 55</h3>
<h3>pressure = 1.53 pascals</h3>
hope that helps and please tell me if i am wrong :)
Answer:
25J
Explanation:
power = work done ÷ time taken.
and work done = force applied × distance covered.
according to the question, the athlete lifts the weight of 100N upto 5m therefore;
100N × 5m = 500N/m
then onwards,
the work done (500 N/m) should be divided by the time taken to calculate the power,
500 ÷ 20s = 25J
is your answer.
hope this helped. :)
The length of the pendulum is 3.3 m.
The given parameters:
- Mass, m = 1.5 kg
- Angle, θ = 35⁰
- Speed, v = 3.4 m/s
<h3>What is principle of conservation of energy?</h3>
- The principle of conservation of energy states that, the total energy of a system is always conserved.
P.E = K.E
mgh = ¹/₂mv²
gh = ¹/₂v²
g(L - Lcosθ) = ¹/₂v²
gL(1 - cosθ) = ¹/₂v²

Thus, the length of the pendulum is 3.3 m.
Learn more about length of pendulum here: brainly.com/question/8168512
Answer:
In a longitudinal wave, particles of the medium vibrate in a direction that is parallel to the direction that the wave travels. Places where particles of the medium crowd closer together are called compressions. Places where particles of the medium spread farther apart are called rarefactions.
Explanation:
Here I =0.4 amp and t=2hr or 2×60×60 sec
We known I=nQ/t where Q is charge and n is no of charge.
n=It/Q
0.4x(2x60x60)/1.6x10^-19