Answer:
0.4A.
Explanation:
Current (A) = Charge (coulomb)/Time (secs)
2 coulombs/5 secs = 0.4A
The greatest height the ball will attain is 3.27 m
<h3>Data obtained from the question</h3>
- Initial velocity (u) = 8 m/s
- Final velocity (v) = 0 m/s (at maximum height)
- Acceleration due to gravity (g) = 9.8 m/s²
The maximum height to which the ball can attain can be obtained as follow:
v² = u² – 2gh (since the ball is going against gravity)
0² = 8² – (2 × 9.8 × h)
0 = 64 – 19.6h
Collect like terms
0 – 64 = –19.6h
–64 = –19.6h
Divide both side by –19.6
h = –64 / –19.6h
h = 3.27 m
Thus, the greatest height the ball can attain is 3.27 m
Learn more about motion under gravity:
brainly.com/question/13914606
Acceleration is the
rate of change of velocity, a body moving with uniform velocity does not
possess acceleration at all i.e. acceleration is zero
An elastic collision is one in which the system does not experience a net loss of kinetic energy as a result of the collision. In elastic collisions, momentum and kinetic energy are both conserved.
<h3>Explain about the Elastic Collision?</h3>
A collision between two bodies in physics is referred to as an elastic collision if their combined kinetic energy stays constant. There is no net conversion of kinetic energy into other forms, such as heat, noise, or potential energy, in an ideal, fully elastic collision
An example of an elastic collision is when two balls collide at a pool table. It is an elastic collision when you throw a ball on the ground and it bounces back into your hand because there is no net change in the kinetic energy.
If there is no kinetic energy lost in the impact, the collision is said to be perfectly elastic. A collision is considered to be inelastic if any of the kinetic energy is converted to another kind of energy during the collision.
To learn more about Elastic Collision refer to:
brainly.com/question/7694106
#SPJ4
Answer:
This is because normal force is exerted perpendicularly to the point of contact between the upper and lower objects.
Explanation:
This is because the upper object is still subject to gravitational pull. Therefore, the amount of force it exerts on the lower object due to gravity will be equal to the normal force that acts in the negative direction of gravitational force. Additionally, normal force is evident because the upper object will not go into the lower object.