Answer:
The spring constant = 104.82 N/m
The angular velocity of the bar when θ = 32° is 1.70 rad/s
Explanation:
From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:


Also;

Thus;

where;
= deflection in the spring
k = spring constant
b = remaining length in the rod
m = mass of the slender bar
g = acceleration due to gravity


Thus; the spring constant = 104.82 N/m
b
The angular velocity can be calculated by also using the conservation of energy;






Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s
Answer:
An image is formed on the retina with light rays converging most at the cornea and upon entering and exiting the lens. Rays from the top and bottom of the object are traced and produce an inverted real image on the retina. The distance to the object is drawn smaller than scale
Answer:
306 m/s
Explanation:
Law of conservation of momentum
m1v1 + m2v2 = (m1+m2)vf
m1 is the bullet's mass so it is 0.1 kg
v1 is what we're trying to solve
m2 is the target's mass so it is 5.0 kg
v2 is the targets velocity, and since it was stationary, its velocity is zero
vf is the velocity after the target is struck by the bullet, so it is 6.0 m/s
plugging in, we get
(0.1 kg)(v1) + (5.0 kg)(0 m/s) = (0.1 kg + 5.0 kg)(6.0 m/s)
(0.1)(v1) + 0 = 30.6
(0.1)(v1) = 30.6
v1 = 306 m/s
the answer to this question is y