I think you need more information like the force of gravity and the force of the three people. Once you combine the two, however, you should get the net force.
Nope Copper is a better conductor
While ice melts, it remains at 0 °C, and the liquid water that is formed with the latent heat of fusion is also at 0 °C. The heat of fusion for water at 0 °C is approximately 334 joules per gram, and the heat of vaporization at 100 °C is about 2,230 joules per gram. So it will be C
Answer: Transverse waves have motion perpendicular to velocity, while longitudinal waves have motion parallel to velocity.
Explanation:
Transverse waves are characterized by the fact that the particles of the medium in which they propagate move transversely to the direction of propagation of the wave.
In other words,<u> its displacement is perpendicular to the direction of propagation of the wave</u>, being a good example the circular waves in the water.
On the other hand, Longitudinal waves are characterized by the fact that <u>the oscillation of the particles in the medium is parallel to the direction of propagation of the wave.</u> A good example of this is the sound wave.
Answer:
L = mp*v₀*(ms*D) / (ms + mp)
Explanation:
Given info
ms = mass of the hockey stick
uis = 0 (initial speed of the hockey stick before the collision)
xis = D (initial position of center of mass of the hockey stick before the collision)
mp = mass of the puck
uip = v₀ (initial speed of the puck before the collision)
xip = 0 (initial position of center of mass of the puck before the collision)
If we apply
Ycm = (ms*xis + mp*xip) / (ms + mp)
⇒ Ycm = (ms*D + mp*0) / (ms + mp)
⇒ Ycm = (ms*D) / (ms + mp)
Now, we can apply the equation
L = m*v*R
where m = mp
v = v₀
R = Ycm
then we have
L = mp*v₀*(ms*D) / (ms + mp)