Answer:
Convergent plate boundary
Explanation:
The convergent plate boundary refers to the type of boundary where two plates move towards each other. Due to this type of motion, there forms a subduction zone, where the denser plate subducts below the lighter plate. This zone of subduction is commonly identified by the presence of a deep and narrow V-shaped depression which is commonly known as the oceanic trench.
When the subducting plate enters into the region of the asthenosphere, the rocks melt and mix with the magma. This magma is then pushed upward due to the force exerted by the convection current that forms in the mantle, and further reaches the over-riding plate and eventually give rise to the formation of volcanoes and volcanic/island arcs.
Thus, this type of plate boundary is responsible for the formation of above-ground volcanic activities.
Answer:
n = 4 x 10¹⁸ photons
Explanation:
First, we will calculate the energy of one photon in the radiation:

where,
E = Energy of one photon = ?
h = Plank's Constant = 6.625 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of radiation = 567 nm = 5.67 x 10⁻⁷ m
Therefore,

E = 3.505 x 10⁻¹⁹ J
Now, the number of photons to make up the total energy can be calculated as follows:

<u>n = 4 x 10¹⁸ photons</u>
The height of the oil column above the water in the vessel is determined as 2 cm.
<h3>
Pressure of the vessel</h3>
The pressure of the vessel due to water, oil and silver poured into the vessel is determined from mercury column.
let level of mercury = 20 cm + 0.5 cm = 20.5 cm
20.5 cmHg = 205 mmHg
1 mmHg = 133.32 Pa
205 mmHg = 27,330.6 Pa
<h3>Height of the liquids in the vessel</h3>
P = ρgh
where;
ρ is the density of water, oil and silver respectively
ρ = 1000 kg/m³ + 881 kg/m³ + 10,800 kg/m³ = 12,681 kg/m³
h = P/(ρg)
h = (27,330.6) / (12,681 x 9.8)
h = 0.22 m
h = 22 cm
<h3>Height of oil column</h3>
Oil is less dense than water and will float on water.
Height of oil column = 22 cm - 20 cm = 2 cm
Learn more about density here: brainly.com/question/6838128
#SPJ1