1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetllana [295]
3 years ago
7

A 750-newton person stands in an elevator that isaccelerating downward. The upward force of theelevator floor on the person must

be(1) equal to 0 N (3) equal to 750 N(2) less than 750 N (4) greater than 750 N
Physics
1 answer:
Margaret [11]3 years ago
7 0
(2)<span>less than 750 N.( if the downward acceleration of elevator were g,then answer would be 0 N.)</span>
You might be interested in
Discuss why Wolpert says we have a brain.
ycow [4]

Answer:

“We have a brain for one reason and one reason only, and that's to produce adaptable and complex movements,” stated Wolpert, Director of the Computational and Biological Learning Lab at the University of Cambridge. ... The evidence for this is in how well we've learned to mimic our movements using computers and robots.

8 0
2 years ago
Read 2 more answers
Assume that a satellite orbits mars 150km above its surface. Given that the mass of mars is 6.485 X 10^23kg, and the radius of m
Kisachek [45]
<span>3598 seconds The orbital period of a satellite is u=GM p = sqrt((4*pi/u)*a^3) Where p = period u = standard gravitational parameter which is GM (gravitational constant multiplied by planet mass). This is a much better figure to use than GM because we know u to a higher level of precision than we know either G or M. After all, we can calculate it from observations of satellites. To illustrate the difference, we know GM for Mars to within 7 significant figures. However, we only know G to within 4 digits. a = semi-major axis of orbit. Since we haven't been given u, but instead have been given the much more inferior value of M, let's calculate u from the gravitational constant and M. So u = 6.674x10^-11 m^3/(kg s^2) * 6.485x10^23 kg = 4.3281x10^13 m^3/s^2 The semi-major axis of the orbit is the altitude of the satellite plus the radius of the planet. So 150000 m + 3.396x10^6 m = 3.546x10^6 m Substitute the known values into the equation for the period. So p = sqrt((4 * pi / u) * a^3) p = sqrt((4 * 3.14159 / 4.3281x10^13 m^3/s^2) * (3.546x10^6 m)^3) p = sqrt((12.56636 / 4.3281x10^13 m^3/s^2) * 4.458782x10^19 m^3) p = sqrt(2.9034357x10^-13 s^2/m^3 * 4.458782x10^19 m^3) p = sqrt(1.2945785x10^7 s^2) p = 3598.025212 s Rounding to 4 significant figures, gives us 3598 seconds.</span>
8 0
3 years ago
How much voltage is in the primary coil if there are 3200 windings in the
Lesechka [4]

Answer:

Voltage in primary coil is 3.91 V

Explanation:

For transformer we know that the working principle is given as

\frac{V_1}{V_2} = \frac{N_1}{N_2}

here we know that

V_1 [tex] = voltage in primary coil[tex]V_2 = 25 V

N_1 = 500

N_2 = 3200

Now we have

\frac{V_1}{25} = \frac{500}{3200}

V_1 = 3.91 V

8 0
3 years ago
Two cylindrical resistors are made from the same material. The shorter one has length L, diameter D, and resistance R1. The long
nordsb [41]

Answer:

the resistance of the longer one is twice as big as the resistance of the shorter one.

Explanation:

Given that :

For the shorter cylindrical resistor

Length = L

Diameter = D

Resistance = R1

For the longer cylindrical resistor

Length = 8L

Diameter = 4D

Resistance = R2

So;

We all know that the resistance of a given material can be determined by using the formula :

R = \dfrac{\rho L }{A}

where;

A = πr²

R = \dfrac{\rho L }{\pi r ^2}

For the shorter cylindrical resistor ; we have:

R = \dfrac{\rho L }{\pi r ^2}

since 2 r = D

R = \dfrac{\rho L }{\pi (\frac{2}{2 \ r}) ^2}

R = \dfrac{ 4 \rho L }{\pi \ D   ^2}

For the longer cylindrical resistor ; we have:

R = \dfrac{\rho L }{\pi r ^2}

since 2 r = D

R = \dfrac{ \rho (8 ) L }{\pi (\frac{2}{2 \ r}) ^2}

R = \dfrac{32\rho L }{\pi \ (4 D)   ^2}

R = \dfrac{2\rho L }{\pi \ (D)   ^2}

Sp;we can equate the shorter cylindrical resistor to the longer cylindrical resistor as shown below :

\dfrac{R_s}{R_L} = \dfrac{ \dfrac{ 4 \rho L }{\pi \ D   ^2}}{ \dfrac{2\rho L }{\pi \ (D)   ^2}}

\dfrac{R_s}{R_L} ={ \dfrac{ 4 \rho L }{\pi \ D   ^2}}* { \dfrac  {\pi \ (D)   ^2} {2\rho L}}

\dfrac{R_s}{R_L} =2

{R_s}=2{R_L}

Thus; the resistance of the longer one is twice as big as the resistance of the shorter one.

7 0
3 years ago
Why do astronauts float aboard the international space station?
lianna [129]
They’re falling toward earth & moving forward at about the same velocity. because the downward and forward forces are nearly equal, the astronauts are not pulled in any specific direction, so they float . <span>
</span>
8 0
3 years ago
Other questions:
  • A light bulb, a speaker, and a toaster ovens are all examples of what in an electric circuit.
    12·1 answer
  • A 0.25 kg skeet (clay target) is fired at an angle of 30 degrees to the horizon with a speed of 25 m/s. When it reaches the maxi
    9·1 answer
  • A holiday ornament in the shape of a hollow sphere with mass 0.010 kg and radius 0.055 m is hung from a tree limb by a small loo
    10·1 answer
  • I need HELP ASAP please...
    9·2 answers
  • NASA sends an unmanned lander to test conditions on the surface of Mars. What is the magnitude of the gravitational force acting
    12·1 answer
  • An apparatus similar to the one used in lab uses an oscillating motor at one end to vibrate a long rope with frequency f = 40 Hz
    5·1 answer
  • THE VELOCITY RATIO OF A SINGLE MOVABLE PULLEY IS TWO​
    14·1 answer
  • When a golfer tees off, the head of her golf club which has a mass of 158 g is traveling 48.2 m/s just before it strikes a 46.0
    6·1 answer
  • Why do we add alcohol/ethanol to the leaf once it is boiled?
    12·1 answer
  • Subject- Science <br>Grade- 6th<br>please help me with hw. Thank you!<br>​
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!