Answer:
High speed optical communication technology
To be able to communicate from the space to the earth and from earth to space is one of the most essential features required during space exploration.
Explanation:
Space exploration involves going into the space, beyond the earth's atmosphere. Landing on other planets and studying their details, going into deeper space beyond the planets to discover new cosmic events or structures is all a part of space exploration.
The key to analyse the studies and observations is being able to communicate the data collected, photos taken etc to the launch centers or space centers on earth. The space centers on earth should also be able to communicate with the persons or the satellites in space.
This is made possible using the optical communication technology which involves the use of optical fibers, lasers etc, since high speeds are more efficient during communication
Answer:
<em>a) 3.6 ft</em>
<em>b) 12.4 ft</em>
Explanation:
Distance between mirrors = 6.2 ft
difference from from the mirror you face = 1.8 ft
a) you stand 1.8 ft in front of the mirror you face.
According to plane mirror rules, the image formed is the same distance inside the mirror surface as the distance of the object (you) from the mirror surface. From this,
your distance from your first "front" image = 1.8 ft + 1.8 ft = <em>3.6 ft</em>
b) The mirror behind you is 6.2 - 1.8 = 4.4 ft behind you.
the back mirror will be reflected 3.6 + 4.4 = 8 ft into the front mirror,
the first image of your back will be 4.4 ft into the back mirror,
therefore your distance from your first "back" image = 8 + 4.4 = <em>12.4 ft</em>
Answer:
I believe it's A.)
Explanation:
Although light comes into our atmosphere through refraction, it reaches our eyes only through reflection from objects. So when light rays reflect off an object and enter the eyes through the cornea you can then see that object.
Hope this helps you out : )
Answer:
- The magnitude of the vector
is 107.76 m
Explanation:
To find the components of the vectors we can use:

where
is the magnitude of the vector, and θ is the angle over the positive x axis.
The negative x axis is displaced 180 ° over the positive x axis, so, we can take:






Now, we can perform vector addition. Taking two vectors, the vector addition is performed:

So, for our vectors:


To find the magnitude of this vector, we can use the Pythagorean Theorem



And this is the magnitude we are looking for.
Answer:
The wavelength of the wave is 20 m.
Explanation:
Given that,
Amplitude = 10 cm
Radial frequency 
Bulk modulus = 40 MPa
Density = 1000 kg/m³
We need to calculate the velocity of the wave in the medium
Using formula of velocity

Put the value into the formula


We need to calculate the wavelength
Using formula of wavelength


Put the value into the formula


Hence, The wavelength of the wave is 20 m.