Answer:
Comparison Microscope
Explanation:
The Comparison Microscope allows for comparison between two objects or samples by placing them side by side.
It is primarily used in criminology for ballistics which makes it ideal to find out if bullets, shells, or cartridge cases were fired from a specific weapon.
Big band is music group (a group of people who perform instrumental and/or vocal music ) playing jazz or jazz-influenced popular music and which was popular during the Swing Era from the mid-1930s until the late 1940s. These big bands contained saxophones, trumpets, trombone and other instruments and typically consisted of approximately 12 to 25 musicians.
Should be an air tight seal
Answer:
A-Caclcuate the potential energy of the ball at that height
Explanation:
(a). Mass of the Body = 10 kg.
Height = 10 m.
Acceleration due to gravity = 9.8 m/s².
Using the Formula,Potential Energy = mgh
= 10 × 9.8 × 10 = 980 J.
(b). Now, By the law of the conservation of the Energy, Total amount of the energy of the system remains constant.
∴ Kinetic Energy before the body reaches the ground is equal to the Potential Energy at the height of 10 m.
∴ Kinetic Energy = 980 J.
(c). Kinetic Energy = 980 J.
Mass of the ball = 10 kg.
∵ K.E. = 1/2 × mv²
∴ 980 = 1/2 × 10 × v²
∴ v² = 980/5
⇒ v² = 196
∴ v = 14 m/s.
Answer:
Ф_cube /Ф_sphere = 3 /π
Explanation:
The electrical flow is
Ф = E A
where E is the electric field and A is the surface area
Let's shut down the electric field with Gauss's law
Фi = ∫ E .dA =
/ ε₀
the Gaussian surface is a sphere so its area is
A = 4 π r²
the charge inside is
q_{int} = Q
we substitute
E 4π r² = Q /ε₀
E = 1 / 4πε₀ Q / r²
To calculate the flow on the two surfaces
* Sphere
Ф = E A
Ф = 1 / 4πε₀ Q / r² (4π r²)
Ф_sphere = Q /ε₀
* Cube
Let's find the side value of the cube inscribed inside the sphere.
In this case the radius of the sphere is half the diagonal of the cube
r = d / 2
We look for the diagonal with the Pythagorean theorem
d² = L² + L² = 2 L²
d = √2 L
we substitute
r = √2 / 2 L
r = L / √2
L = √2 r
now we can calculate the area of the cube that has 6 faces
A = 6 L²
A = 6 (√2 r)²
A = 12 r²
the flow is
Ф = E A
Ф = 1 / 4πε₀ Q/r² (12r²)
Ф_cubo = 3 /πε₀ Q
the relationship of these two flows is
Ф_cube /Ф_sphere = 3 /π