The perimeter is 16 inches.
To factor this fraction, you have be be aware of two special factoring formula:
a^3<span> + </span>b^3<span> = (</span>a<span> + </span>b)(a^2<span> – </span>ab<span> + </span>b^2<span>)
</span><span>(a+b)³ = a³ + 3a²b + 3ab² + b³
You can see the top part in this case is (x+y)^3, and the bottom (denominator) can be factor into (x+y)(x^2-xy+y^2)
we can cancel (x+y), so what we have left is (x+y)^2/(x^2-xy+y^2)
or (x^2+2xy+y^2)/(x^2-xy+y^2)
</span>
To elaborate:
To do this problem, we assume that Mr. Sanchez is driving at a constant rate.
According to this information, he has driven 120 mi in 3 hr. To find how much he drives in 5 hr, we first have to find how many mi he drives in 1 hour. To do this, we divide 120 miles by 3 hours, since we assume that he managed to drive an equal amount in each hour.
120/3=40
Therefore Mr. Sanchez drove at a rate of 40 mph.
However, this isn't the final answer. 40 miles is the distance for one hour of driving. To find the distance for 5 hours, we have to multiply the distance by 5 as well.
40 times 5=200
In conclusion, Mr. Sanchez will drive 200 miles in 5 hours.
Answer:
-14
Step-by-step explanation:
(-12)+(-2)
You solve using Pemdas, doing the (-8/4) first, and then doing (-6)(2)
The answer is the two values added together.