Answer:
The maximum data rate supported by this line is 39900 bps
Explanation:
The maximum data rate supported by this line can be obtained using the formula below
c = W*log2(S/N+1)
where;
c is the maximum data rate supported by the line
W is the bandwidth = 4kHz
S/N+1 is the signal to noise ratio = 1001
c = 4*log2(1001)
c = 39868.9 ≅ 39900 bps
Therefore, the maximum data rate supported by this line is 39900 bps
<h2>distance = 523 cm</h2>
Explanation:
( a ) The rotational speed of the ladybug = 25 r.p.m = 25/60 r.p.s
= 5/12 rev/sec
( b ) The definition of frequency is the number of rotations per second .
Here the number of rotations per second is 5/12 . Thus frequency = 5/12 Hz
( c ) The tangential speed is v = angular velocity x radius of rotation
The angular velocity ω = 2π x n , where n is the number of rotations per second
Thus angular velocity = 2π x 5/12 = 5π/6 rad/sec
The linear velocity = angular velocity x distance from center of record
Thus tangential speed = 5π/6 x 10 = 25π/3 cm/sec
Angular displacement in 20 sec = ω x t = 5π/6 x 20 = 50π/3 rad
Linear displacement = angular displacement x distance from center of record
= 50π/3 x 10 = 500π/3 = 523 cm
Answer: The focal length of the cornea-lens system in his eye must be LESS THAN the distance between the front and back of his eye.
Explanation:
The human eye the front part of the eye is the CORNEA. This is the tough white transparent part of the eye that helps in the refraction of light rays. While the backside of the eye is the RETINA. This is the part of the eye when images are focused.
When a normal eye is at rest, parallel rays from a distant object are focused on the retina. The ability of the eye - lens to focus points at different distances on the retina is known as accomodation. The adjustment of the eye lens to focus objects of varying distances is brought about by the ciliary muscles. The have the ability to change the shape of the eye which leads to change in focal length.
When a person with normal vision looks at a distant object at infinity, the lens brings parallel rays to focus on the retina. Thus, the furthest point which the eye can see distinctly is called the far point of the eye and it's infinity for a normal eye. But Joe was able to focus his eye on the tree, meaning that the tree was within his near point. This is the nearest point at which an object is clearly seen. Therefore, when the effective focal length of the cornea-lens system changes, it changes the location of the image of any object in one's field of view.