Supposing the runner is condensed to a point and moves upward at 2.2 m/s.
It takes a time = 2.2/g = 2.2/9.8 = 0.22 seconds to increase to max height.
Now looking at this condition in opposite - that is the runner is at max height and drops back to earth in 0.22 s (symmetry of this kind of motion).
From what height does any object take 0.22 s to fall to earth (supposing there is no air friction)?
d = 1/2gt²= (0.5)(9.8)(0.22)²= 0.24 m
Answer:
C.<u>ten</u><u> </u><u>times</u><u> </u><u>the</u><u> </u><u>intensity</u><u>.</u>
Answer:
The purpose of report : Reports communicate information which has been compiled as a result of research and analysis of data and of issues .
Answer:
The direct answer to the question as written is as follows: nothing happens to gravity when someone jumps up - gravity continues exerting a force on the body of that particular someone proportional to (mass of someone) x (mass of Earth) / (distance squared). What you might be asking, however, is what is the net force acting on the body of someone jumping up. At the moment of someone jumping up there is an upward acceleration, i.e., an upward-directed force which counteracts the gravitational force - this is the net force ( a result of the jump force minus gravity). From that moment on, only gravity acts on the body. The someone moves upward gradually decelerating to the downward gravitational acceleration until they reaches the peak of the jump (zero velocity). Then, back to Earth.