Answer:

Because the 
The integral converges to 
Step-by-step explanation:
For this case we want to find the following integral:

And we can solve the integral on this way:


And if we evaluate the integral using the fundamental theorem of calculus we got:

Because the 
The integral converges to 
If I’m not mistaken 174 is your median
9514 1404 393
Answer:
C, A, A
Step-by-step explanation:
In general, you ...
- identify the coefficients of one of the variables
- swap them, and negate one of them
- multiply the corresponding equations by the "adjusted" coefficients.
__
In problem 1, the x-coefficients are 8 and 2. A common factor of 2 can be removed so that we're dealing with the numbers 4 and 1. Assuming we want to multiply one of the equations by 1, leaving it unchanged, the value we want to multiply by will be -4. After we swap the coefficients, that multiplier is associated with equation 2:
multiply equation 2 by -4 . . . (eliminates x)
Likewise, the y-coefficients in problem 1 are -1 and 3. Again, if we want to multiply one of the equations by 1, leaving it unchanged, the coefficient we will change the sign of is -1 (becomes 1). After we swap the coefficients, the multiplier 3 is associated with equation 1:
multiply equation 1 by 3 . . . (eliminates y)
These two choices are B and A, respectively, so the one that does NOT work for problem 1 is choice C, as indicated below.
__
The other problems are worked in a similar fashion.
Answer: The y intercepts would be: ( 0 , -2 ).
The x intercepts would be: ( 1 , 0 ).
Step-by-step explanation:
Answer: x=1
Step-by-step explanation: