Balanced equation is:
2Mn+4CuCl——->4Cu+2MnCl2
a=2
b=4
c=4
d=2
You're supposed to divide the mass by the volume, which is going to equal to 5
Answer:
<h2>
1 kg</h2>
Explanation:
Check the diagram attached below for the diagram.
Let the weight of the rock be W and the mass of the meter stick be M. Note that the mass of the meter stick will be placed at the middle of the meter stick i.e at the 50cm mark
Using the principle of moment to calculate the weight of the rock. It states that the sum of clockwise moments is equal to the sum of anti clockwise moment.
Moment = Force * perpendicular distance
The meterstick acts in the clockwise direction while the rock acys in the anti clockwise direction
Clockwise moment = 1kg * 25 = 25kg/cm
Anticlockwise moment = W * 25cm = 25W kg/cm
Equating both moments of forces
25W = 25
W = 25/23
W = 1 kg
The mass of the rock is also 1 kg
Answer:
The momentum of block B = 27 Kg m/s
Explanation:
Given,
The initial momentum of block A, MU = 15 Kg m/s
The final momentum of block A, MV = -12 Kg m/s
Consider the block B is initially at rest.
Therefore, the initial momentum of block B, mu = 0
According to the laws of conservation of linear momentum, the momentum of the body before impact is equal to the momentum of the body after impact.
<em> MU + mu = MV + mv</em>
15 + (0) = (-12) + mv
mv = 15 + 12
= 27 Kg m/s
Hence, the momentum of the block B after impact is, mv = 27 Kg m/s
Certain electrons in the dye molecule move to a higher energy level, with the difference in energy between the lower and higher energy levels being the same as the energy of the absorbed photons.