<h3>
Answer:</h3>
Gas law : Boyle's law
New pressure: 66.24 atm
<h3>
Explanation:</h3>
Concept tested: Gas laws (Boyle's law)
<u>We are given,</u>
- Initial pressure, P₁ = 2.86 atm
- Initial volume, V₁ = 8472 mL
- New volume, V₂ IS 365.8 mL
We need to determine the new pressure, P₂
- According to Boyle's law , the volume of a fixed mass of a gas and the pressure are inversely proportional at constant temperature.
- That is,

- This means , PV = k (constant)
- Therefore; P₁V₁ = P₂V₂
- Rearranging the formula, we can get the new pressure, P₂
P₂ = P₁V₁ ÷ V₂
= (2.86 atm × 8472 mL) ÷ 365.8 mL
= 66.24 atm
Therefore, the new pressure is 66.24 atm
Answer: ΔH for the reaction is -277.4 kJ
Explanation:
The balanced chemical reaction is,

The expression for enthalpy change is,
![\Delta H=\sum [n\times \Delta H(products)]-\sum [n\times \Delta H(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%28products%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%28reactant%29%5D)
![\Delta H=[(n_{CCl_4}\times \Delta H_{CCl_4})+(n_{HCl}\times B.E_{HCl}) ]-[(n_{CH_4}\times \Delta H_{CH_4})+n_{Cl_2}\times \Delta H_{Cl_2}]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%28n_%7BCCl_4%7D%5Ctimes%20%5CDelta%20H_%7BCCl_4%7D%29%2B%28n_%7BHCl%7D%5Ctimes%20B.E_%7BHCl%7D%29%20%5D-%5B%28n_%7BCH_4%7D%5Ctimes%20%5CDelta%20H_%7BCH_4%7D%29%2Bn_%7BCl_2%7D%5Ctimes%20%5CDelta%20H_%7BCl_2%7D%5D)
where,
n = number of moles
Now put all the given values in this expression, we get
![\Delta H=[(1\times -139)+(1\times -92.31) ]-[(1\times -74.87)+(1\times 121.0]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%281%5Ctimes%20-139%29%2B%281%5Ctimes%20-92.31%29%20%5D-%5B%281%5Ctimes%20-74.87%29%2B%281%5Ctimes%20121.0%5D)

Therefore, the enthalpy change for this reaction is, -277.4 kJ
A: making s sandcastle. This is because water and sand is only a mixture, so they do not react with each other. All the rest include chemical reactions!
Answer:
6.02*10^23
Explanation:
This is the number for one mole. Just like one dozen = 12, one mole = 6.02*10^23.
Fun fact, if you had a mole of pennies you could spend 1 million dollars every second of your life and not have even spent 1% of it by the time you die at 100 years old.
The volume of titanium with mass of 0. 10g and density of 4. 51 g/cm³ is 0. 02 cm³
<h3>
What is volume?</h3>
Volume is known to be equal to the mass divided by the density.
It is written thus:
Volume = Mass / density
<h3>
How to calculate the volume</h3>
The volume is calculated using the formula:
Volume = mass ÷ density
Given the mass = 0. 10g
Density = 4.51 g/cm³
Substitute the values into the formula
Volume of titanium = 0. 10 ÷ 4.51 = 0. 02 cm³
Thus, the volume of titanium with mass of 0. 10g and density of 4. 51 g/cm³ is 0. 02 cm³
Learn more about volume here:
brainly.com/question/1762479
#SPJ1