Answer:
∠PQS= 3(x +5)
Step-by-step explanation:
∠PQR = 5x + 25
∠SQR+∠PQS= 5x+25
∠PQS = ∠PQR-∠SQR
∠PQS= (5x + 25 )-(2x + 10)
∠PQS = 5x+25 -2x-10
∠PQS= 3x +15
∠PQS= 3(x +5)
<span>A) 2a + 3b = 12
B) ab = 6 solving for a
B) a = 6 / b then we substitute this into equation A)
</span><span>A) 12 / b + 3b = 12 </span><span>multiplying this by "b"
A) 12 + 3b^2 = 12b
A) 3b^2 -12b +12= 0 dividing by "3"
A) b^2 -4b + 4 = 0
Factoring
(b-2) * (b-2) = 0
b = 2
Since b = 2 then a = 3
</span>NOW, we put these numbers into:
<span>8a^3 +27b^3
</span>
8*3*3*3 + 27*2*2*2
216 + 216
The answer is 512
1) 7000+300+10+3
2) 900,000+90,000+400+40+6
3) 600+80+2
4)30,000+7000+900+10+1
5)3,000,000+900,000+40,000+1,000+400+70+7
6)8000+400+70+4
7)700+70+2
8)30,000+7000+200+80+2
9)700,000+30,000+5,000+800+10+1
10)40,000+6000+400+40+9
11)5000+8000+70+2
12)5,000,000+700,000+50,000+8,000+900+40+5
13)5,000,000+900,000+90,000+8,000+800+90+0
14)300+70+7
15)300,000+20,000+3,000+200+40+8
recall that a cube has all equal sides, check the picture below.
![\bf \textit{volume of a cube}\\\\ V=x^3~~ \begin{cases} x=side's~length\\[-0.5em] \hrulefill\\ V=5.12 \end{cases}\implies 5.12=x^3 \\\\\\ \sqrt[3]{5.12}=x\implies 1.72354775\approx x](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20cube%7D%5C%5C%5C%5C%0AV%3Dx%5E3~~%0A%5Cbegin%7Bcases%7D%0Ax%3Dside%27s~length%5C%5C%5B-0.5em%5D%0A%5Chrulefill%5C%5C%0AV%3D5.12%0A%5Cend%7Bcases%7D%5Cimplies%205.12%3Dx%5E3%0A%5C%5C%5C%5C%5C%5C%0A%5Csqrt%5B3%5D%7B5.12%7D%3Dx%5Cimplies%201.72354775%5Capprox%20x)