Check the picture below.
now, we have a triangle with all three sides, thus we can use Heron's Area Formula on the triangle.
![\bf \qquad \textit{Heron's area formula} \\\\ A=\sqrt{s(s-a)(s-b)(s-c)}\qquad \begin{cases} s=\frac{a+b+c}{2}\\[-0.5em] \hrulefill\\ a=10\\ b=26.695\\ c=22\\ s=29.3475 \end{cases} \\\\\\ A=\sqrt{29.3475(29.3475-10)(29.3475-26.695)(29.3475-22)} \\\\\\ A=\sqrt{29.3475(19.3475)(2.6525)(7.3475)}\implies A\approx \sqrt{11066.007} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill A\approx 105.195~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Ctextit%7BHeron%27s%20area%20formula%7D%20%5C%5C%5C%5C%20A%3D%5Csqrt%7Bs%28s-a%29%28s-b%29%28s-c%29%7D%5Cqquad%20%5Cbegin%7Bcases%7D%20s%3D%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D10%5C%5C%20b%3D26.695%5C%5C%20c%3D22%5C%5C%20s%3D29.3475%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%3D%5Csqrt%7B29.3475%2829.3475-10%29%2829.3475-26.695%29%2829.3475-22%29%7D%20%5C%5C%5C%5C%5C%5C%20A%3D%5Csqrt%7B29.3475%2819.3475%29%282.6525%29%287.3475%29%7D%5Cimplies%20A%5Capprox%20%5Csqrt%7B11066.007%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20A%5Capprox%20105.195~%5Chfill)
Answer: Angle bisectors
Step-by-step explanation:
The incenter is the point forming the origin of a circle inscribed inside the triangle. Like the centroid, the incenter is always inside the triangle. It is constructed by taking the intersection of the angle bisectors of the three vertices of the triangle.
Answer:
C= 82.1116
k=-0.0007192
Step-by-step explanation:

Applying logarithmic properties yields in the following linear system:

Solving for k:

Solving for C:

C= 82.1116
k=-0.0007192
To <span>transform the quadratic equation into the equation form (x + p)2 = q we shall proceed as follows:
3+x-3x^2=9
putting like terms together we have:
-3x^2+x=6
dividing through by -3 we get:
x^2-x/3=-2
but
c=(b/2a)^2
c=(-1/6)^2=1/36
thus the expression will be:
x^2-x/3+1/36=-2+1/36
1/36(6x-1)</span>²=-71/36
the answer is:
1/36(6x-1)²=-71/36