The rate constant is mathematically given as
K2=2.67sec^{-1}
<h3>What is the Arrhenius equation?</h3>
The rate constant for a particular reaction may be calculated with the use of the Arrhenius equation. This constant can be stated in terms of two distinct temperatures, T1 and T2, as follows:

Therefore
KT1= 0.0110^{-1}
T1= 21+273.15
T1= 294.15K
T2= 200
T2=200+273.15
T2= 473.15K
Ea= 35.5 Kj/Mol
Hence, in j/mol R Ea is
Ea=35.5*1000 j/mol R

K2/0.0110 =e^(5.492)
K2/0.0110 =242.74
K2= 242.74*0.0110
K2=2.67sec^{-1}
In conclusion, rate constant
K2=2.67sec^{-1}
Read more about rate constant
brainly.com/question/20305871
#SPJ1
What best describes the result is a mixture
Answer:
Percent error = 12.5%
Explanation:
In a measurement you can find percent error following the formula:
Percent error = |Measured value - Accepted Value| / Acepted value * 100
Based on the data of the problem, accepted value is 22.4L and the measured Value (Value of Sara) was 19.6L.
Replacing:
Percent error = |Measured value - Accepted Value| / Acepted value * 100
Percent error = |19.6L - 22.4L| / 22.4L * 100
Percent error = |-2.8L| / 22.4L * 100
Percent error = 2.8L / 22.4L * 100
Percent error = 12.5%
Answer:
2-3-1-4
Explanation:
The astronomer Nicolaus Copernicus did not have a theory about the Earth revolving around the sun until he got into astronomy and began to study the patterns of the sun and the moon as well as reading other entries from previous astronomers. You can pretty much guess from there, he had to have the theory before proving it etc.