In the reaction of silver nitrate with copper metal, metallic silver comes out of solution, and the solution turns blue. This as a <u>single replacement</u> reaction.
<h3>What is
single replacement reaction?</h3>
A single replacement reaction, also known as a single displacement reaction, occurs when one element in a molecule is swapped out for another. The starting materials are always pure elements, such as a pure zinc metal or hydrogen gas, plus an aqueous compound.
A + BC → B + AC
When A is more reactive than B or when the product AC is more stable than BC, single replacement reactions happen. A and B could either be two halogens or two metals (with hydrogen included) (C is a cation). C functions as a spectator ion when BC and AC are in aqueous solutions.
For example, 2HCl(aq)+Zn(s)→ZnCl₂(aq)+H₂(g)
Learn more about single replacement reactions here:
brainly.com/question/19068047
#SPJ4
Answer:
38.9 grams of 
Explanation:
0.187 mol BaCl2 x 
0.187 m x 208 g/m
0.187 x 208 g
38.896 g --> 38.9 g BaCl2
Answer:
The final temperature is 348.024°C.
Explanation:
Given data:
Specific heat of copper = 0.385 j/g.°C
Energy absorbed = 7.67 Kj (7.67×1000 = 7670 j)
Mass of copper = 62.0 g
Initial temperature T1 = 26.7°C
Final temperature T2 = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
Q = m.c. ΔT
7670 J = 62.0 g × 0.385 j/g °C ×( T2- 26.7 °C
)
7670 J = 23.87 j.°C ×( T2- 26.7 °C
)
7670 J / 23.87 j/°C = T2- 26.7 °C
T2- 26.7 °C = 321.324°C
T2 = 321.324°C + 26.7 °C
T2 = 348.024°C
The final temperature is 348.024°C.
Answer:
The genetic material of the organism will be DNA.
Explanation:
Sexual reproduction can be described as a type of reproduction in which offsprings with genetic diversity are produced. Sexual reproduction occurs by the process of meiosis.
DNA is the genetic material which is passed from the parents to the offsprings at the time of fertilization. However, the phenomenon of individual assortment and crossing over during the process of meiosis produces genetic variability among the children and the parents.