Basalt, rhyolite, andesite, and obsidian could all be answers.
Answer:
Kc = 8.05x10⁻³
Explanation:
This is the equilibrium:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Initially 0.0733
React 0.0733α α/2 3/2α
Eq 0.0733 - 0.0733α α/2 0.103
We introduced 0.0733 moles of ammonia, initially. So in the reaction "α" amount react, as the ratio is 2:1, and 2:3, we can know the moles that formed products.
Now we were told that in equilibrum we have a [H₂] of 0.103, so this data can help us to calculate α.
3/2α = 0.103
α = 0.103 . 2/3 ⇒ 0.0686
So, concentration in equilibrium are
NH₃ = 0.0733 - 0.0733 . 0.0686 = 0.0682
N₂ = 0.0686/2 = 0.0343
So this moles, are in a volume of 1L, so they are molar concentrations.
Let's make Kc expression:
Kc= [N₂] . [H₂]³ / [NH₃]²
Kc = 0.0343 . 0.103³ / 0.0682² = 8.05x10⁻³
Answer:
yes it is ( From +3 to 0 )
Explanation:
If this is the balanced equation:
AlCl3 + 3Na ——> 3NaCl + Al
Al Cl 3Na Na Cl Al
+3 -3 0 +1 -1 0
Ice is a mixture and it can be a compound at the same time. A mixture is when you have to substance's put together fro example you can mix salt and sugar together. But a compound is when two different elements or molecules are combined. Ice cream is a mixture or cream and sugar mainly.
Answer:
Part 1) 85.3 grams NaCl
Part 2) 8.79 x 10²³ formula units NaCl
Explanation:
<u>(Part 1)</u>
To find the mass of NaCl, you need to multiply the given value (1.46 moles) by the molar mass of NaCl. This measurement is the atomic masses of the elements times each of their quantities combined. In this case, there is only one mole of each element in the molecule. Moles should be located in the denominator of the conversion to allow for the cancellation of units. The final answer should have 3 sig figs to reflect the given value.
Molar Mass (NaCl): 22.99 g/mol + 35.45 g/mol
Molar Mass (NaCl): 58.44 g/mol
1.46 moles NaCl 58.44 g
--------------------------- x ---------------- = 85.3 grams NaCl
1 mole
<u>(Part 2)</u>
I do not know which other question the second part is referring to, so I will just use the moles given in the first part. To find the formula units, you need to multiply the given value (1.46 moles NaCl) by Avogadro's Number. This conversion represents the number of formula units found in 1 mole of the sample. The moles should be in the denominator of the conversion to allow for the cancellation of units.
Avogadro's Number:
1 mole = 6.022 x 10²³ formula units
1.46 moles NaCl 6.022 x 10²³ units
------------------------ x ----------------------------- = 8.79 x 10²³ formula units NaCl
1 mole