Answer:
a2 = 3a1
Explanation:
Detailed explanation and calculation is shown in the image below
Answer:
Speed is same as that before it entered glass.
Explanation:
Given:
A light ray enters and passes through the glass as shown in the diagram.
We have to analyze its speed.
Speed of light in air is
and speed of light in glass is
Whenever a light ray enters a glass block or slab there is bending of light at the interface of the two media.
So speed of light will decrease in glass medium and again it passes to the air.
So
Speed of light in air will again increase or will be equivalent to the earlier speed when it was entering the glass block.
Finally
Speed is same as that before it entered glass as it in the same medium (air).
Answer:
The work done is 0.
Explanation:
The reason no work is done is because the equation W = Fs.
W = work
F= force
s= displacement
In this scenario F = 50 and s= 0
Therefore.
W = 50(0)
W = 0
Answer:
When two forces acting on an object are equal in size but act in opposite directions, we say that they are balanced forces.
Explanation:
Answer:
a) For y = 102 mA, R = 98.039 ohms
For y = 97 mA, R = 103.09 ohms
b) Check explanatios for b
Explanation:
Applied voltage, V = 10 V
For the first measurement, current 
According to ohm's law, V = IR
R = V/I
Here, 

For the second measurement, current 


b) ![y = \left[\begin{array}{ccc}y_{1} &y_{2} \end{array}\right] ^{T}](https://tex.z-dn.net/?f=y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dy_%7B1%7D%20%26y_%7B2%7D%20%5Cend%7Barray%7D%5Cright%5D%20%5E%7BT%7D)
![y = \left[\begin{array}{ccc}y_{1} \\y_{2} \end{array}\right]](https://tex.z-dn.net/?f=y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dy_%7B1%7D%20%5C%5Cy_%7B2%7D%20%5Cend%7Barray%7D%5Cright%5D)
![y = \left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3} \end{array}\right]](https://tex.z-dn.net/?f=y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D102%2A10%5E%7B-3%7D%20%5C%5C97%2A10%5E%7B-3%7D%20%20%5Cend%7Barray%7D%5Cright%5D)
A linear equation is of the form y = Gx
The nominal value of the resistance = 100 ohms
![x = \left[\begin{array}{ccc}100\end{array}\right]](https://tex.z-dn.net/?f=x%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D100%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3} \end{array}\right] = \left[\begin{array}{ccc}G_{1} \\G_{2} \end{array}\right] \left[\begin{array}{ccc}100\end{array}\right]\\\left[\begin{array}{ccc}G_{1} \\G_{2} \end{array}\right] = \left[\begin{array}{ccc}102*10^{-5} \\97*10^{-5} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D102%2A10%5E%7B-3%7D%20%5C%5C97%2A10%5E%7B-3%7D%20%20%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7DG_%7B1%7D%20%5C%5CG_%7B2%7D%20%20%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D100%5Cend%7Barray%7D%5Cright%5D%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7DG_%7B1%7D%20%5C%5CG_%7B2%7D%20%20%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D102%2A10%5E%7B-5%7D%20%5C%5C97%2A10%5E%7B-5%7D%20%20%5Cend%7Barray%7D%5Cright%5D)