Question:
A particle moving along the x-axis has a position given by x=(24t - 2.0t³)m, where t is measured in s. What is the magnitude of the acceleration of the particle at the instant when its velocity is zero
Answer:
24 m/s
Explanation:
Given:
x=(24t - 2.0t³)m
First find velocity function v(t):
v(t) = ẋ(t) = 24 - 2*3t²
v(t) = ẋ(t) = 24 - 6t²
Find the acceleration function a(t):
a(t) = Ẍ(t) = V(t) = -6*2t
a(t) = Ẍ(t) = V(t) = -12t
At acceleration = 0, take time as T in velocity function.
0 =v(T) = 24 - 6T²
Solve for T
Substitute -2 for t in acceleration function:
a(t) = a(T) = a(-2) = -12(-2) = 24 m/s
Acceleration = 24m/s
Answer:
I remember learning about this in health class. I believe the answer is quality of life.
Explanation:
I'm not entirely sure but I would think it's A.
Answer:
the answer the correct one is c
Explanation:
Electric charges of different signs attract and those of the same sign repel. In addition, there are two types of insulating bodies, where the loads are fixed (immobile) and metallic (with mobile loads.
Let's analyze the situation presented
* A rod with positive approaches and the sphere is attracted, so the charge on the sphere is negative
* A rod with a negative charge approaches and the sphere is attracted, therefore the charge of the sphere must be positive.
For this to happen, the sphere must be unloaded and the charge that creates the phenomenon are induced charges because the mobile charges of the same sign as the sphere are repelled.
when checking the answer the correct one is c
Explanation:
The uneven heating causes temperature differences, which in turn cause air currents (wind) to develop, which then move heat from where there is more heat (higher temperatures) to where there is less heat (lower temperatures). The atmosphere thus becomes a giant "heat engine", continuously driven by the sun.
Wind is the result of pressure changes in the atmosphere due to temperature.