Answer:
The solid sphere will reach the bottom first.
Explanation:
In order to develop this problem and give it a correct solution, it is necessary to collect the concepts related to energy conservation. To apply this concept, we first highlight the importance of conserving energy so we will match the final and initial energies. Once this value has been obtained, we will concentrate on finding the speed, and solving what is related to the Inertia.
In this way we know that,


We know as well that the lineal and angular energy are given by,

And the tangential kinetic energy as

Where
Replacing

Re-arrange for v,

We have here three different objects: solid cylinder, hollow pipe and solid sphere. We need the moment inertia of this objects and replace in the previous equation found, then,
For hollow pipe:




For solid cylinder:




For solid sphere,




Then comparing the speed of the three objects we have:


Before collecting a specimen of urine or feces, the nursing assistant asks the nurse or consults the lab for which storage and delivery method to use.
There are different tests that need to be performed on a urine or feces specimen. It depends on the patients that which test would be asked for him to be done.
The storage and delivery methods for urine and feces in the case of different tests has to be consulted by the nurse or consultant.
Incase of an emergency test, whose results are immediately required the method of delivery is a fast mode one. For patients that have a mild disease or are not at risk, other reliable methods can be used. Each specimen should be properly labeled for proper checking.
To learn more about urine specimen, click here:
brainly.com/question/28329488
#SPJ4
Charge dQ on a shell thickness dr is given by
dQ = (charge density) × (surface area) × dr
dQ = ρ(r)4πr²dr
∫ dQ = ∫ (a/r)4πr²dr
∫ dQ = 4πa ∫ rdr
Q(r) = 2πar² - 2πa0²
Q = 2πar² (= total charge bound by a spherical surface of radius r)
Gauss's Law states:
(Flux out of surface) = (charge bound by surface)/ε۪
(Surface area of sphere) × E = Q/ε۪
4πr²E = 2πar²/ε۪
<span>E = a/2ε۪
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
Explanation:
A )
The smallest tidal ranges are less than 1 m (3 feet). The highest tides, called spring tides, are formed when the earth, sun and moon are lined up in a row. This happens every two weeks during a new moon or full moon. Smaller tides, called neap tides, are formed when the earth, sun and moon form a right angle.
C ) The most extreme tidal range occurs during spring tides, when the gravitational forces of both the Moon and Sun are aligned (syzygy), reinforcing each other in the same direction (new moon) or in opposite directions (full moon).