1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serggg [28]
3 years ago
13

An electrician charges a base fee of $65 plus $40 for each hour of work. The minimum the electrician

Mathematics
1 answer:
Mashutka [201]3 years ago
3 0

Answer:

DONE

Step-by-step explanation:

HE CHARGES $145 PER HOUR

1 HOUR=$145

2 HOUR= $145*2= $290

3 HOUR= $145*3= $435

4 HOUR= $145*4=$580

You might be interested in
What sum will amount to rupees 4000 in 3 years at 6% p.a. compound interest​
natali 33 [55]

Answer:

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{Given:}}}}}}}\end{gathered}

  • ⇢ Principle = Rs.4000
  • ⇢ Rate = 6%
  • ⇢ Time = 3 year

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{To Find:}}}}}}}\end{gathered}

  • ⇢ Amount

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{Using Formula:}}}}}}}\end{gathered}

{\dag{\underline{\boxed{\sf{Amount  ={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\dag{\underline{\boxed{\sf{Compound \: Interest = Amount- Principle }}}}

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{Solution:}}}}}}}\end{gathered}

{\bigstar \:{\underline{\pmb{\frak{\red{Firstly,Finding  \: the  \: Amount }}}}}}

\quad {:\implies{\sf{Amount  = \bf{P{\bigg(1  +  \dfrac{R}{100}{\bigg)}^{T}}}}}}

  • Substituting the values

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg(1  +  \dfrac{6}{100}{\bigg)}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg(1 \times 100  +  \dfrac{6}{100}{\bigg)}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg( \dfrac{100 + 6}{100}{\bigg)}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg( \dfrac{106}{100}{\bigg)}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg({\cancel{\dfrac{106}{100}}{\bigg)}}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg( \dfrac{53}{50}{\bigg)}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg( \dfrac{53}{50} \times \dfrac{53}{50} \times \dfrac{53}{50}{\bigg)}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg( \dfrac{148877}{125000}{\bigg)}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000 \times  \dfrac{148877}{125000}}}}}

\quad {:\implies{\sf{Amount  = \bf{4{\cancel{000}} \times  \dfrac{148877}{125{\cancel{000}}}}}}}

\quad {:\implies{\sf{Amount  = \bf{\dfrac{148877 \times 4}{125}}}}}

\quad {:\implies{\sf{Amount  = \bf{\dfrac{595508}{125}}}}}

\quad {:\implies{\sf{Amount  = \bf{\cancel{\dfrac{595508}{125}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4764.064}}}}

\begin{gathered} \dag{\boxed{\textsf{\textbf{\underline{\color{green}{Amount = {Rs.4764.064}}}}}}}\end{gathered}

  • Hence, The Amount is Rs.4764.064

\begin{gathered}\end{gathered}

{\bigstar \:{\underline{\pmb{\frak{\red{ Now,Finding  \: The \:  Compound \:  Interest }}}}}}

\quad{: \implies{\sf{Compound \: Interest =  \bf{Amount- Principle }}}}

  • Substituting the values

\quad{: \implies{\sf{Compound \: Interest = \bf{4764.064- 4000 }}}}

\quad{: \implies{\sf{Compound \: Interest =\bf{764.064}}}}

\begin{gathered} \dag{\boxed{\textsf{\textbf{\underline{\color{green}{Compound Interest  = Rs.764.064}}}}}}\end{gathered}

  • Henceforth,The Compound Interest is Rs.764064

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{Learn More:}}}}}}}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered} \dag \: \underline{\bf{More \: Useful \: Formula}}\\ {\boxed{\begin{array}{cc}\dashrightarrow {\sf{Amount = Principle + Interest}} \\ \\ \dashrightarrow \sf{ P=Amount - Interest }\\ \\ \dashrightarrow \sf{ S.I = \dfrac{P \times R \times T}{100}} \\ \\ \dashrightarrow \sf{P = \dfrac{Interest \times 100 }{Time \times Rate}} \\ \\ \dashrightarrow \sf{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}} \\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}

8 0
3 years ago
Factor 9x 6 – 16y 6 completely.
il63 [147K]
Please use the symbol " ^ " to denote exponentiation:  9x^6 = (___)^2.

Note that 9x^6 = 3^2*(x^3)^2.  Thus,

9x^6 = (___)^2 becomes (3x^3)^2.

Then    <span>9x^6 – 16y^6 = (3x^3)^2 - (4y^3)^2 = ((3x^3) - (4y^3))[(3x^3) +(4y^3)]</span>
5 0
3 years ago
Create the pattern with the rule n×3+1
Kitty [74]
3n+1 is the answer
Hope this helps and please mark me as brainlest and like
5 0
3 years ago
There are 18 girls in mr. Brimley’s math class. If 60% of the students are girls, how many students are in mr. brimley’s math cl
m_a_m_a [10]

Answer:

30

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Actual
Katena32 [7]

Answer:

Step-by-step explanation:

so first you multiply how much she jogged then put the in infront of the number

3 0
3 years ago
Other questions:
  • Find the sum of 3.0478 and 4.92 using the correct number of significant digits.
    15·1 answer
  • Consider the following.
    8·1 answer
  • What is the probability that the sum of the numbers on two dice is at most 7
    10·1 answer
  • The place to the left of the tens place
    11·2 answers
  • Which formula could be used to determine the circuference of a circle
    8·1 answer
  • Is 8(4x-3) equal to 12x-3
    8·2 answers
  • What factors do 16 and 44 have in<br> common?
    13·2 answers
  • 2x² – xy - 15y2<br> How to factor by grouping
    11·1 answer
  • Please help is for today!
    5·1 answer
  • You and your friend are sharing three eighths of a bag of candy. How much of the bag will each of you get if you share it evenly
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!