Answer:
Explanation:
a. The amplitude is the measure of the height of the wave from the midline to the top of the wave or the midline to the bottom of the wave (called crests). The midline then divides the whole height in half. Thus, the amplitude of this wave is 9.0 cm.
b. Wavelength is measured from the highest point of one wave to the highest point of the next wave (or from the lowest point of one wave to the lowest point of the next wave, since they are the same). The wavelength of this wave then is 20.0 cm. or 
c. The period, or T, of a wave is found in the equation
were f is the frequency of the wave. We were given the frequency, so we plug that in and solve for T:
so
and
T = .0200 seconds to the correct number of sig fig's (50.0 has 3 sig fig's in it)
d. The speed of the wave is found in the equation
and since we already have the frequency and we solved for the wavelength already, filling in:
and
v = 50.0(20.0) so
v = 1.00 × 10³ m/s
And there you go!
Answer:
when it's home run or home run in baseball
Explanation:
i looked it up on google translate
Most modern games have a sense of real-world physics, but not exactly perfect. In a video game, the realistic movement or action greatly depends on the precision of coding. In real life, movement isn't done or programmed by a strand of code.
Your presentation sounds interesting, being a gamer myself, I would look forward to it. But the choice lies in your hands. If you do reconsider, be sure you have a backup plan. Good luck to you.
The traditional forecast process employed by most NMHSs involves forecasters producing text-based, sensible, weather-element forecast products (e.g. maximum/minimum temperature, cloud cover) using numerical weather prediction (NWP) output as guidance. The process is typically schedule-driven, product-oriented and labour-intensive. Over the last decade, technological advances and scientific breakthroughs have allowed NMHSs’ hydrometeorological forecasts and warnings to become much more specific and accurate.
As computer technology and high-speed dissemination systems evolved (e.g. Internet), National Weather Service (NWS) customers/partners were demanding detailed forecasts in gridded, digital and graphic formats. Traditional NWS text forecast products limit the amount of additional information that can be conveyed to the user community. The concept of digital database forecasting provides the capability to meet customer/partner demands for more accurate, detailed hydrometeorological forecasts. Digital database forecasting also offers one of the most exciting opportunities to integrate PWS forecast dissemination and service delivery, which most effectively serves the user community.
Both the US National Oceanic and Atmospheric Administration(NOAA)/National Weather Service and Environment Canada are currently using digital database forecasting technology to produce routine forecasts. The Australian Bureau of Meteorology is in the process of evaluating and developing an implementation plan for database forecasting using the NOAA/NWS National Digital Forecast Database approach.
Answer:
Explanation:
Please check the attached file below to see the solution and answer to the given problem using a software