Answer:
60 km
Explanation:
For an object (or a person, such as in this case) moving at constant speed, the speed is equal to the ratio between the distance travelled and the time taken:

where
v is the speed
d is the distance
t is the time taken
In this case, we have:
v = 120 km/h is the speed
t = 30 min = 0.5 h is the time taken
Therefore, we can rearrange the equation to find the total distance travelled:

Answer:
2.5 mi/s^2
Explanation:
please see paper for work!
It's not the potential energy. It's just the potential.
It's greatest at the positive terminal of the battery or power supply.
Answer:
The answer is <em>e.2</em>
Explanation:
We should make use of Snell's refractive law. The arriving wave has a certain velocity at T in a medium, then instantly it reaches a medium (same composition) at T' where velocity would either decrease or increase.
When the incidence angle is 30 °, and we want to make the refraction angle 90 ° such that no sound passes through the barrier (this would be named total internal refraction), so we want the second medium to be "faster" than in the first.
<em>The steps are in the image attached:</em>
Answer: a disadvantage of using a ramp is that it is not safe