1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zubka84 [21]
3 years ago
14

A damped harmonic oscillator consists of a mass on a spring, with a small damping force that is proportional to the speed of the

block. If the mass of the block is 320 g, the period of oscillation is 2.4 s, and the block loses 10% of its mechanical energy after one cycle, what is the damping constant?
Physics
1 answer:
exis [7]3 years ago
4 0

Answer:

2.19 N/m

Explanation:

A damped harmonic oscillator is formed by a mass in the spring, and it does a harmonic simple movement. The period of it is the time that it does one cycle, and it can be calculated by:

T = 2π√(m/K)

Where T is the period, m is the mass (in kg), and K is the damping constant. So:

2.4 = 2π√(0.320/K)

√(0.320/K) = 2.4/2π

√(0.320/K) = 0.38197

(√(0.320/K))² = (0.38197)²

0.320/K = 0.1459

K = 2.19 N/m

You might be interested in
Which of the following statements are true of thermal energy and kinetic
Elis [28]

Answer:

a

all the molecules or atoms in motion has kinetic energy

4 0
1 year ago
2. This diagram represents a top-down view of an experiment on a table. The 250 g and 100 g masses are falling and are pulling t
Rasek [7]

Answer:

According to the data given in the question, experiment on table two pulling and falling masses are arranged in the fig. 250  g is pulling right side and   100 g pulling down. The gravitational force is common to both the masses, so we cannot say that the block moves towards heavier mass, also the block  does not move towards the lighter mass.

Obviously, the effect of heavier mass of 250 g is more on the block, so the block moves towards right bottom corner. i.e., diagonally between two masses


please find the attachment.

4 0
3 years ago
Read 2 more answers
A pulley is able to lift a mass of 25 kg 0.30 m with an applied force of 50 N over a distance of 1.5 m. What is the ideal mechan
spin [16.1K]

The ideal mechanical advantage of the pulley system is 3

7 0
3 years ago
If you increase the frequency of a sound wave four times what will happen to its speed
Anika [276]

Answer: The correct answer is "the speed of the wave becomes four times".

Explanation:

The relation between the speed, frequency and the wavelength is as follows:

v=f\lambda

Here, v is the speed of the wave, f is the frequency and \lambda is the wavelength.

The speed of the sound wave is directly proportional to the frequency.

In the given problem, if the speed of the sound wave is increased four times then the speed of the sound becomes four times.

Therefore, the speed of the sound wave becomes four times.

8 0
3 years ago
Read 2 more answers
An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the compression process,
Sedbober [7]

Answer:

a.T_3=1723.8kPa\\b.n=0.563\\c.MEP=674.95kPa

Explanation:

a. Internal energy and the relative specific volume at s_1 are determined  from A-17:u_1=214.07kJ/kg, \ \alpha_r_1=621.2.

The relative specific volume at s_2 is calculated from the compression ratio:

\alpha_r_2=\frac{\alpha_r_1}{r}\\=\frac{621.2}{16}\\=38.825

#from this, the temperature and enthalpy at state 2,s_2 can be determined using interpolations T_2=862K and h_2=890.9kJ/kg. The specific volume at s_1 can then be determined as:

\alpha_1=\frac{RT_1}{P_1}\\\\=\frac{0.287\times 300}{95} m^3/kg\\0.906316m^3/kg

Specific volume,s_2:

\alpha_2=\frac{\alpha_1}{r}\\=\frac{0.906316}{16}m^3/kg\\=0.05664m^3/kg

The pressures at s_2 \ and\  s_3 is:

P_2=P_3=\frac{RT_2}{\alpha_2}\\\\=\frac{0.287\times862}{0.05664}\\=4367.06kPa

.The thermal efficiency=> maximum temperature at s_3 can be obtained from the expansion work at constant pressure during s_2-s_3

\bigtriangleup \omega_2_-_3=P(\alpha_3-\alpha_2)\\R(T_3-T_2)=P\alpha(r_c-1)\\T_3=T_2+\frac{P\alpha_2}{R}(r_c-1)\\\\=(862+\frac{4367\times 0.05664}{0.287}(2-1))K\\=1723.84K

b.Relative SV and enthalpy  at s_3 are obtained for the given temperature with interpolation with data from A-17 :a_r_3=4.553 \ and\  h_3=1909.62kJ/kg

Relative SV at s_4 is

a_r_4=\frac{r}{r_c}\alpha _r_3

==\frac{16}{2}\times4.533\\=36.424

Thermal efficiency occurs when the heat loss is equal to the internal energy decrease and heat gain equal to enthalpy increase;

n=1-\frac{q_o}{q_i}\\=1-\frac{u_4-u_1}{h_3-h_2}\\=1-\frac{65903-214.07}{1909.62-890.9}\\=0.563

Hence, the thermal efficiency is 0.563

c. The mean relative pressure is calculated from its standard definition:

MEP=\frac{\omega}{\alpa_1-\alpa_2}\\=\frac{q_i-q_o}{\alpha_1(1-1/r)}\\=\frac{1909.62-890.9-(65903-214.7)}{0.90632(1-1/16)}\\=674.95kPa

Hence, the mean effective relative pressure is 674.95kPa

3 0
3 years ago
Other questions:
  • Balance the following equation Fe203+HCL fecl3+H20
    8·1 answer
  • What two properties show that a drink is a fluid
    15·1 answer
  • 2 clues about a chemical change
    13·1 answer
  • An opera singer in a convertible sings a note at 600 Hz while cruising down the highway at 90 km/h. What is the frequency heard
    13·1 answer
  • Calculate the unit cell edge length for an 79 wt% Ag- 21 wt% Pd alloy. All of the palladium is in solid solution, and the crysta
    6·1 answer
  • PLEASE help me with this science question.
    10·2 answers
  • During normal beating, a heart creates a maximum 3.95-mV potential across 0.305 m of a person’s chest, creating a 0.75-Hz electr
    15·1 answer
  • A 90-kg skydiver jumps from a height of 6000 m above the ground, falling head-first (pike position). The area of the diver is 0.
    6·1 answer
  • Put the history of the health care industry in order.
    6·1 answer
  • Antonio has been told that he needs to work on his self- awareness. What might he do to most improve this skill
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!