1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zimovet [89]
3 years ago
15

A hypothetical A-B alloy of composition 57 wt% B-43 wt% A at some temperature is found to consist of mass fractions of 0.5 for b

oth and phases. If the composition of the phase is 87 wt% B-13 wt% A, what is the composition of the phase
Engineering
1 answer:
Dennis_Churaev [7]3 years ago
8 0

Answer:

composition of alpha phase is 27% B

Explanation:

given data

mass fractions  = 0.5 for both

composition = 57 wt% B-43 wt% A

composition = 87 wt% B-13 wt% A

solution

as by total composition Co = 57 and by beta phase composition  Cβ = 87  

we use here lever rule that is

Wα = Wβ   ...............1

Wα = Wβ = 0.5

now we take here left side of equation

we will get

\frac{C_\beta - Co}{C_\beta - Ca}   = 0.5

\frac{87 - 57}{87 - Ca} = 0.5  

solve it we get

Ca = 27

so composition of alpha phase is 27% B

You might be interested in
A rectangular workpiece has the following original dimensions: 2a=100mm, h=25mm, and width=20mm. The metal has a strengh coeffic
Elena-2011 [213]

Answer:

See attachment for detailed answer.

Explanation:

Download pdf
4 0
3 years ago
For some transformation having kinetics that obey the Avrami equation, the parameter n is known to have a value of 1.7. If, afte
luda_lava [24]

Answer:

It would take approximately 305 s to go to 99% completion

Explanation:

Given that:

y = 50% = 0.5

n = 1.7

t = 100 s

We need to first find the parameter k from the equation below.

exp(-kt^n)=1-y

taking the natural logarithm of both sides:

-kt^n=ln(1-y)\\kt^n=-ln(1-y)\\k=-\frac{ln(1-y)}{t^n}

Substituting values:

k=-\frac{ln(1-y)}{t^n}= -\frac{ln(1-0.5)}{100^1.7} = 2.76*10^{-4}

Also

t^n=-\frac{ln(1-y)}{k}\\t=\sqrt[n]{-\frac{ln(1-y)}{k}}

Substituting values and y = 99% = 0.99

t=\sqrt[n]{-\frac{ln(1-y)}{k}}=\sqrt[1.7]{-\frac{ln(1-0.99)}{2.76*10^{-4}}}=304.6s

∴ t ≅ 305 s

It would take approximately 305 s to go to 99% completion

8 0
3 years ago
Read 2 more answers
This assignment is designed to test your understanding of graphical user interface components and Event Driven programming in Ja
lys-0071 [83]

Answer:

Java program is given below

Explanation:

JavaPadGUI.java

package javapad.gui;

import java.awt.BorderLayout;

import java.awt.Container;

import java.awt.Dimension;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.PrintWriter;

import java.util.Scanner;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JOptionPane;

import javax.swing.JPanel;

import javax.swing.JScrollPane;

import javax.swing.JTextArea;

public class JavaPadGUI extends JFrame implements ActionListener{

  //constants

  private static final String TITLE = "Macrosoft JavaPad XP";

  private static final String SLOGAN = "Macrosoft: Resistance is futile";

 

  //button names

  private static final String NEW = "New";

  private static final String LOAD = "Load";

  private static final String SAVE = "Save";

  private static final String QUIT = "Quit";

 

  private static final String FILENAME = "hardcode.txt";

  //messages

 

  private static final String QUIT_MSG = "Quitting, Save?";

  private static final String LOAD_ERR = "Could not access file " + FILENAME;

 

 

  //fields

  private JTextArea txtContent;

  private JButton butNew, butLoad, butSave, butQuit;

 

  public JavaPadGUI()

  {

      super(TITLE);

      createUI();

      setSize(new Dimension(400, 300));

      setDefaultCloseOperation(EXIT_ON_CLOSE);

         

  }

 

  private void createUI()

  {

      Container c = getContentPane();

      c.setLayout(new BorderLayout(30,30));

     

      //create the buttons panel

      JPanel butPanel = new JPanel();

      butPanel.add(butNew = new JButton(NEW));

      butPanel.add(butLoad = new JButton(LOAD));

      butPanel.add(butSave = new JButton(SAVE));

      butPanel.add(butQuit = new JButton(QUIT));

     

      //set command names for the buttons, these will be when button is clicked

      butNew.setActionCommand(NEW);

      butLoad.setActionCommand(LOAD);

      butSave.setActionCommand(SAVE);

      butQuit.setActionCommand(QUIT);

     

      JPanel sloganPanel = new JPanel();

      sloganPanel.add(new JLabel(SLOGAN));

     

      //create textarea with scrollbar

      txtContent = new JTextArea(15, 25);

      txtContent.setLineWrap(true);

         

      JScrollPane scroll = new JScrollPane(txtContent);

     

      //now add all components

      c.add(butPanel, BorderLayout.NORTH);

      c.add(scroll, BorderLayout.CENTER);

      c.add(sloganPanel, BorderLayout.SOUTH);

     

     

      //set the actionlistner to buttons to handle button click event

      butNew.addActionListener(this);

      butLoad.addActionListener(this);

      butSave.addActionListener(this);

      butQuit.addActionListener(this);

     

  }

  public void actionPerformed(ActionEvent e)

  {

      String cmd = e.getActionCommand();

      if(cmd.equals(NEW))

          txtContent.setText("");

      else if (cmd.equals(LOAD))

          load();

      else if(cmd.equals(SAVE))

          save();

      else if (cmd.equals(QUIT))

          quit();

  }

  private void quit()

  {

      int option = JOptionPane.showConfirmDialog(this, QUIT_MSG);

      if(option == JOptionPane.YES_OPTION)

      {

          save();

      }

     

      System.exit(0);

  }

 

  private void save()

  {

      try {

          PrintWriter w = new PrintWriter(new File(FILENAME));

          w.write(txtContent.getText());

          w.close();

      } catch (FileNotFoundException e) {

          JOptionPane.showMessageDialog(this,"I/O Error", LOAD_ERR, JOptionPane.ERROR_MESSAGE);

      }

             

  }

  private void load()

  {

      try {

          Scanner s = new Scanner(new File(FILENAME));

          String str = "";

          while(s.hasNextLine())

              str += s.nextLine();

          txtContent.setText(str);

          s.close();

      } catch (FileNotFoundException e) {

          JOptionPane.showMessageDialog(this, LOAD_ERR, "I/O Error",JOptionPane.ERROR_MESSAGE);

      }

     

  }

}

RunJavaPad.java

package javapad;

import javapad.gui.JavaPadGUI;

public class RunJavaPad {

  public static void main(String[] args) {

      JavaPadGUI gui = new JavaPadGUI();

      gui.setVisible(true);

  }

}

7 0
3 years ago
Tensile Strength (MPa) Number-Average Molecular Weight (g/mol)
IceJOKER [234]

Answer:

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

\mathbf{M_n = 49163.56431  \ g/mol }

Explanation:

The question can be well structured in a table format as illustrated below:

Tensile Strength (MPa)            Number- Average Molecular Weight  (g/mol)

82                                                  12,700

156                                                 28,500

The tensile strength and number-average molecular weight for two polyethylene materials given above.

Estimate the number-average molecular weight that is required to give a tensile strength required above. Using the data given find TS (infinity) in MPa.

<u>SOLUTION:</u>

We know that :

T_S = T_{S \infty} - \dfrac{A}{M_n}

where;

T_S = Tensile Strength

T_{S \infty} = Tensile Strength (Infinity)

M_n = Number- Average Molecular Weight  (g/mol)

SO;

82= T_{S \infty} - \dfrac{A}{12700} ---- (1)

156= T_{S \infty} - \dfrac{A}{28500} ---- (2)

From equation (1) ; collecting the like terms; we have :

T_{S \infty} =82+ \dfrac{A}{12700}

From equation (2) ; we have:

T_{S \infty} =156+ \dfrac{A}{28500}

So; T_{S \infty} = T_{S \infty}

Then;

T_{S \infty} =82+ \dfrac{A}{12700} =156+ \dfrac{A}{28500}

Solving by L.C.M

\dfrac{82(12700) + A}{12700} =\dfrac{156(28500) + A}{28500}

\dfrac{1041400 + A}{12700} =\dfrac{4446000 + A}{28500}

By cross multiplying ; we have:

({4446000 + A})*  {12700} ={28500} *({1041400 + A})

(5.64642*10^{10} + 12700A) =(2.96799*10^{10}+ 28500A)

Collecting like terms ; we have

(5.64642*10^{10} - 2.96799*10^{10} ) =( 28500A- 12700A)

2.67843*10^{10}  = 15800 \ A

Dividing both sides by 15800:

\dfrac{ 2.67843*10^{10} }{15800} =\dfrac{15800 \ A}{15800}

A = 1695208.861

From equation (1);

82= T_{S \infty} - \dfrac{A}{12700} ---- (1)

Replacing A = 1695208.861 in the above equation; we have:

82= T_{S \infty} - \dfrac{1695208.861}{12700}

T_{S \infty}= 82 + \dfrac{1695208.861}{12700}

T_{S \infty}= \dfrac{82(12700) +1695208.861 }{12700}

T_{S \infty}= \dfrac{1041400 +1695208.861 }{12700}

T_{S \infty}= \dfrac{2736608.861 }{12700}

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

From equation(2);

156= T_{S \infty} - \dfrac{A}{28500} ---- (2)

Replacing A = 1695208.861 in the above equation; we have:

156= T_{S \infty} - \dfrac{1695208.861}{28500}

T_{S \infty}= 156 + \dfrac{1695208.861}{28500}

T_{S \infty}= \dfrac{156(28500) +1695208.861 }{28500}

T_{S \infty}= \dfrac{4446000 +1695208.861 }{28500}

T_{S \infty}= \dfrac{6141208.861}{28500}

\mathbf{T_{S \infty } \ \approx 215.481 \ MPa}

We are to also estimate the number- average molecular weight that is required to give a tensile strength required above.

If the Tensile Strength (MPa) is 82 MPa

Definitely the average molecular weight will be = 12,700 g/mol

If the Tensile Strength (MPa) is 156 MPa

Definitely the average molecular weight will be = 28,500 g/mol

But;

Let us assume that the Tensile Strength (MPa) = 181 MPa for example.

Using the same formula:

T_S = T_{S \infty} - \dfrac{A}{M_n}

Then:

181 = 215.481- \dfrac{1695208.861 }{M_n}

Collecting like terms ; we have:

\dfrac{1695208.861 }{M_n} = 215.481-  181

\dfrac{1695208.861 }{M_n} =34.481

1695208.861= 34.481 M_n

Dividing both sides by 34.481; we have:

M_n = \dfrac{1695208.861}{34.481}

\mathbf{M_n = 49163.56431  \ g/mol }

5 0
3 years ago
How many people made machines
olganol [36]

Answer:

The total number of people whom have made machines is not a recorded figure? Need to be more specific :/

Explanation:

Sorry not very helpful, your question is REALLY broad

3 0
3 years ago
Read 2 more answers
Other questions:
  • It is known that the connecting rod AB exerts on the crank BCa 2.5-kN force directed down andto the left along the centerline of
    12·1 answer
  • During the collision, is the magnitude of the force of asteroid A on asteroid B greater than, less than, or equal to the magnitu
    11·2 answers
  • A 2.2-kg model rocket is launched vertically and reaches an altitude of 70 m with a speed of 30 m/s at the end of powered flight
    5·1 answer
  • What's a disadvantage of highest MERV-rated filters?
    10·2 answers
  • A 6-pole, 50 Hz squirrel cage induction motor has rotor resistance and standstill reactance referred to stator of 0.2 ohm and 1
    7·1 answer
  • Shear plane angle and shear strain: In an orthogonal cutting operation, the tool has a rake angle = 16°. The chip thickness befo
    7·1 answer
  • How much memory can a 32 -bit processor support ?
    13·1 answer
  • To provide some perspective on the dimensions of atomic defects, consider a metal specimen that has a dislocation density of 105
    6·1 answer
  • Which one of the following best defines hardness: (a) energy absorbed by a material when an object strikes its surface, (b) resi
    8·1 answer
  • What is voltage drop?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!