Answer:
Q = 5.06 x 10⁻⁸ m³/s
Explanation:
Given:
v=0.00062 m² /s and ρ= 850 kg/m³
diameter = 8 mm
length of horizontal pipe = 40 m
Dynamic viscosity =
μ = ρv
=850 x 0.00062
= 0.527 kg/m·s
The pressure at the bottom of the tank is:
P₁,gauge = ρ g h = 850 x 9.8 x 4 = 33.32 kN/m²
The laminar flow rate through a horizontal pipe is:


Q = 5.06 x 10⁻⁸ m³/s
Assumptions:
- Steady state.
- Air as working fluid.
- Ideal gas.
- Reversible process.
- Ideal Otto Cycle.
Explanation:
Otto cycle is a thermodynamic cycle widely used in automobile engines, in which an amount of gas (air) experiences changes of pressure, temperature, volume, addition of heat, and removal of heat. The cycle is composed by (following the P-V diagram):
- Intake <em>0-1</em>: the mass of working fluid is drawn into the piston at a constant pressure.
- Adiabatic compression <em>1-2</em>: the mass of working fluid is compressed isentropically from State 1 to State 2 through compression ratio (r).

- Ignition 2-3: the volume remains constant while heat is added to the mass of gas.
- Expansion 3-4: the working fluid does work on the piston due to the high pressure within it, thus the working fluid reaches the maximum volume through the compression ratio.

- Heat Rejection 4-1: heat is removed from the working fluid as the pressure drops instantaneously.
- Exhaust 1-0: the working fluid is vented to the atmosphere.
If the system produces enough work, the automobile and its occupants will propel. On the other hand, the efficiency of the Otto Cycle is defined as follows:

where:

Ideal air is the working fluid, as stated before, for which its specific heat ratio can be considered constant.

Answer:
See image attached.
Answer:
B) 5.05
Explanation:
The wall thickness of a pipe is the difference between the diameter of outer wall and the diameter of inner wall divided by 2. It is given by:
Thickness of pipe = (Outer wall diameter - Inner wall diameter) / 2
Given that:
Inner diameter = ID = 25 ± 0.05, Outer diameter = OD = 35 ± 0.05
Maximum outer diameter = 35 + 0.05 = 35.05
Minimum inner diameter = 25 - 0.05 = 24.95
Thickness of pipe = (maximum outer wall diameter - minimum inner wall diameter) / 2 = (35.05 - 24.95) / 2 = 5.05
or
Thickness = (35 - 25) / 2 + 0.05 = 10/2 + 0.05 = 5 + 0.05 = 5.05
Therefore the LMC wall thickness is 5.05
Answer:
The difference of head in the level of reservoir is 0.23 m.
Explanation:
For pipe 1

For pipe 2

Q=2.8 l/s
![Q=2.8\times 10^{-3]](https://tex.z-dn.net/?f=Q%3D2.8%5Ctimes%2010%5E%7B-3%5D)
We know that Q=AV




head loss (h)

Now putting the all values

So h=0.23 m
So the difference of head in the level of reservoir is 0.23 m.