Answer:
r = 2.031 x 10⁶ m = 2031 km
Explanation:
In order for the asteroid to orbit the planet, the centripetal force must be equal to the gravitational force between asteroid and planet:
Centripetal Force = Gravitational Force
mv²/r = GmM/r²
v² = GM/r
r = GM/v²
where,
r = radial distance = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
M = Mass of Planet = 3.52 x 10¹³ kg
v = tangential speed = 0.034 m/s
Therefore,
r = (6.67 x 10⁻¹¹ N.m²/kg²)(3.52 x 10¹³ kg)/(0.034 m/s)²
<u>r = 2.031 x 10⁶ m = 2031 km</u>
I uploaded the answer to a file hosting. Here's link:
tinyurl.com/wtjfavyw
Acceleration = vf-vi /t
10-22/3=2.6m/s^2
R 3/4 = (R3 * R4) / (R3 + R 4) = ( 9 * 18 ) /(9 + 18 ) = 162 / 27 = 6 Ohms
R e = R 1 + R 2 + R 3/4 + R 5 = 3 + 6 + 6 + 15 = 30 Ohms
I = U / Re = 90 V / 30 Ohms = 3 A
Finally for the voltage U 3/4 ( the parallel portion of the circuit ):
U 3/4 = 6 Ohms * 3 A = 18 V
Answer: 18 V