The amount of air resistance<span> an </span>object<span> experiences depends on its speed, its cross-sectional area, its shape and the density of the </span>air<span>. </span>Air<span> densities vary with altitude, temperature and humidity. Nonetheless, 1.29 kg/m</span>3<span> is a very reasonable value. The shape of an </span>object affects<span> the drag coefficient (C</span>d<span>)</span>
Answer:
We can use 2 g H = v2^2 - v1^2 or
v2^2 = 2 g H + v1^2
Since 88 ft/sec = 60mph we have 30 mph = 44 ft/sec
The object will return with the same speed that it had initially so the object
starts out with a downward speed of 44 ft/sec
Then v2^2 = 2 * 32 ft/sec^2 * 160 ft + 44 (ft/sec)^2
v2^2 = (2 * 32 * 160 + 44^2) ft^2 / sec^2 = 12180 ft^2/sec^2
v2 = 110 ft/sec
Answer:
If you apply a force to separate 2 opposite poles, the potential energy of the system increases.
People have diffrent body builds and bone structure
Mechanical advantage of a machine is the ratio of the output force over the input force or M=Fo/Fi. Since M=1, Fi=Fo, or the input force is equal to the output force. This means that to raise the refrigerator that weighs 900 N, we need the same input force of 900 N, or Fo=Fi=900 N.