#1
Divide into two rectangles


#2

#3

Answer: Pt1= Only x=5
Pt2=Is not x=5 is an extraneous solution though I believe It is x=-2 is an extraneous solution
Step-by-step explanation:
Answer:
Your answers are correct.
Step-by-step explanation:
The equality will be true for odd multiples of π/4, so the last two choices will not show the expression to be <em>not</em> an identity.
The normal vector to the plane <em>x</em> + 3<em>y</em> + <em>z</em> = 5 is <em>n</em> = (1, 3, 1). The line we want is parallel to this normal vector.
Scale this normal vector by any real number <em>t</em> to get the equation of the line through the point (1, 3, 1) and the origin, then translate it by the vector (1, 0, 6) to get the equation of the line we want:
(1, 0, 6) + (1, 3, 1)<em>t</em> = (1 + <em>t</em>, 3<em>t</em>, 6 + <em>t</em>)
This is the vector equation; getting the parametric form is just a matter of delineating
<em>x</em>(<em>t</em>) = 1 + <em>t</em>
<em>y</em>(<em>t</em>) = 3<em>t</em>
<em>z</em>(<em>t</em>) = 6 + <em>t</em>