Answer:
what is it on? like name one of the questions
Explanation:
Answer:
Lithium has the lowest electronegativity.
Explanation:
Electronegativity measures the tendency of an atom to attract the bonding pair of electrons. As we move left to right in a period, the number of shell remains same but the number of electron increases(negative charge increases. Hence, electronegativity also increases.
As Lithium is the left most element in this period. It has the lowest electronegativity value which is equal to 0.98.
Answer:

Explanation:
Given:
height above which the rock is thrown up, 
initial velocity of projection, 
let the gravity on the other planet be g'
The time taken by the rock to reach the top height on the exoplanet:
where:
final velocity at the top height = 0 
(-ve sign to indicate that acceleration acts opposite to the velocity)

The time taken by the rock to reach the top height on the earth:



Height reached by the rock above the point of throwing on the exoplanet:

where:
final velocity at the top height = 0 


Height reached by the rock above the point of throwing on the earth:



The time taken by the rock to fall from the highest point to the ground on the exoplanet:
(during falling it falls below the cliff)
here:
initial velocity= 0 



Similarly on earth:

Now the required time difference:


To solve this problem we will apply the linear motion kinematic equations. To determine the position in which the braking starts we will start from the definition of distance as a function of speed and time, that is

Here,
= Initial position
v = Velocity
t = time
Replacing we have that


Now the acceleration is given by the function,

Here,
= Final velocity
= Initial velocity
a = Acceleration
x = Displacement
Replacing we have that


Therefore the acceleration necessary to bring the train to rest is 
This is possible due to inertia of motion. which is nothing but newton's first law.
according to this law , an object tries to retain its state of motion or rest unless acted upon by an external force.
consider an object placed on a paper, initially both the object and paper are at rest. to pull the paper , we apply force on the paper and paper gains velocity. but the object keeps its motion of rest and hence the paper can be removed without moving the object.