Since the 2 points form a triangle with hypothenuse of √5 [ √(1²+2²)],
I guess apply the formula :

with r as √5 and q as 1x10^-6
not sure about this answer tho
draw a diagram first to understand better
Answer:
I believe it would be Pennsylvania and New Jersey they both border Maryland. Didn't see any other states that border Maryland with West Virginia and Virginia being exempt from the question.
Explanation:
I assuming they are not going to be very big just small enough for the car to get over the top and not go backwards. The coasting is all the momentum thy have to get over the hill and they don't have a lot of momentum. hope this helps ☺
The magnitude of <em>electrical</em> force on charge
due to the others is 0.102 newtons.
<h3>
How to calculate the electrical force experimented on a particle</h3>
The vector <em>position</em> of each particle respect to origin are described below:
![\vec r_{1} = (-0.500, 0)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r_%7B1%7D%20%3D%20%28-0.500%2C%200%29%5C%2C%5Bm%5D)
Then, distances of the former two particles particles respect to the latter one are found now:
![\vec r_{13} = (+0.500, +0.500)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r_%7B13%7D%20%3D%20%28%2B0.500%2C%20%2B0.500%29%5C%2C%5Bm%5D)


![\vec r_{23} = (-0.500, +0.500)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r_%7B23%7D%20%3D%20%28-0.500%2C%20%2B0.500%29%5C%2C%5Bm%5D)


The resultant force is found by Coulomb's law and principle of superposition:
(1)
Please notice that particles with charges of <em>same</em> sign attract each other and particles with charges of <em>opposite</em> sign repeal each other.
(2)
Where:
- Electrostatic constant, in newton-square meters per square Coulomb.
,
,
- Electric charges, in Coulombs.
,
- Distances between particles, in meters.
,
- Unit vectors, no unit.
If we know that
,
,
,
,
,
,
and
, then the vector force on charge
is:

![\vec R = 0.072\cdot \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right) + 0.072\cdot \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right)\,[N]](https://tex.z-dn.net/?f=%5Cvec%20R%20%3D%200.072%5Ccdot%20%5Cleft%28-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2C%20-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%20%5Cright%29%20%2B%200.072%5Ccdot%20%5Cleft%28%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2C%20-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%20%5Cright%29%5C%2C%5BN%5D)
![\vec R = 0.072\cdot \left(0, -\sqrt{2}\right)\,[N]](https://tex.z-dn.net/?f=%5Cvec%20R%20%3D%200.072%5Ccdot%20%5Cleft%280%2C%20-%5Csqrt%7B2%7D%5Cright%29%5C%2C%5BN%5D)
And the magnitude of the <em>electrical</em> force on charge
(
), in newtons, due to the others is found by Pythagorean theorem:

The magnitude of <em>electrical</em> force on charge
due to the others is 0.102 newtons. 
To learn more on Coulomb's law, we kindly invite to check this verified question: brainly.com/question/506926
Answer:
a) 27.2 V
b)27.2 V
Explanation:
Charge of the electron =charge of the proton = q = 1.6 × 10⁻¹⁹ C
Radius = r = 0.53×10⁻¹⁰ m
Electric Potential = V = k q/r
k = 9 ×10⁹ N m²/C² = Coulomb's constant.
V = (9 ×10⁹)(1.6 × 10⁻¹⁹)/( 0.53×10⁻¹⁰) = 27.2 V
b) Potential Energy of the electron = k q × q / r
= [(9 ×10⁹)(1.6 × 10⁻¹⁹)(1.6 × 10⁻¹⁹) / (0.53×10⁻¹⁰)] / (1.6 × 10⁻¹⁹) eV,
since 1 electron volt = (1.6 × 10⁻¹⁹)joules
= 27.2 eV