Speed = Distance/Time = 100 km / 4 hours = 100/4 km per hour = 25 kph
Infrared waves. The other 3 would hurt you because they are below the UV scale of 400 nanometers. Infrared is light that wouldn't harm you
Answer:
Vr = 20 [km/h]
Explanation:
In order to solve this problem, we have to add the relative velocities. We must remember that velocity is a vector, therefore it has magnitude and direction. We will take the sea as the reference measurement level.
Let's take the direction of the ship as positive. Therefore the boy moves in the opposite direction (Negative) to the reference level (the sea).
![V_{r}=30-10\\V_{r}=20 [km/h]](https://tex.z-dn.net/?f=V_%7Br%7D%3D30-10%5C%5CV_%7Br%7D%3D20%20%5Bkm%2Fh%5D)
Answer:
oo.p i wish I could answer that
Explanation:
Answer:
e. Both the acceleration and net force on the car point inward.
Explanation:
If no net force acts on the car, the car must drive in a straight line, at constant speed.
As the acceleration is defined as the rate of change of the velocity vector, this means that it can produce either a change in the magnitude of the velocity (the speed) or in the direction.
In order to the car can follow a circular trajectory, it must be subjected to an acceleration, that must go inward, trying to take the car towards the center of the circle.
The net force that causes this acceleration, aims inward, and is called the centripetal force.
It is not a different type of force, it can be a friction force, a tension force, a normal force, etc., as needed.