Answer:
1.8 moles of O₂
Explanation:
The balance chemical equation for said double replacement (photosynthesis) reaction is as follow;
6 CO₂ + 6 H₂O → C₆H₁₂O₆ + 6 O₂
According to balance chemical equation,
6 moles of O₂ are produced by = 6 moles of CO₂
So,
1.8 moles of O₂ will be produced by = X moles of O₂
Solving for X,
X = 1.8 mol × 6 mol / 6 mol
X = 1.8 moles of O₂
Stoichiometric problems in which moles are given and moles or other reactant or product asked are the simplest problems. One should only write the balanced chemical equation and perform above method to find the required moles.
If I did the math right .. it would be 84.46grams
Answer:
- <u><em>butylphenyl ether.</em></u>
Explanation:
The formula of the compound is:
- CH₃ - CH₂ - CH₂ - CH₂ - O - C₆H₅
1. The functional group is of the kind R - O - R', i.e. two alkyl groups each attached to one end of the oxygen atom. That means that the compound is an ether.
2. One group attached to the oxygen group is CH₃ - CH₂ - CH₂ - CH₂ - which has 4 carbons and is named butyl group.
3. The other group attached to the oxygen atom is C₆H₅ - which is derived from ciclohexane as is known as phenyl group.
4. Using the rule of naming the subtituents in alphabetical order, you name butyl first and phenyl second, so it is <u><em>butylphenyl ether.</em></u>
[H_{3}O^{+}] = 0.00770 M
The equilibrium equation representing the dissociation of 

Given [H_{3}O^{+}] = 0.00770 M
Let the initial concentration of acid be x and change y
So y =
=
= 0.00770 M



0.00257 x - 0.00001979 = 0.00005929
x = 0.031 M
Therefore, initial concentration of the weak acid is <u>0.031 M</u>
<span>In each case, the same bond gets broken - the bond between the hydrogen and oxygen in an -OH group. Writing the rest of the molecule as "X"
</span>
The factors to consider
Two of the factors which influence the ionisation of an acid are:
<span>the strength of the bond being broken,the stability of the ions being formed.</span>
In these cases, you seem to be breaking the same oxygen-hydrogen bond each time, and so you might expect the strengths to be similar.