Answer:
O a polymer
Explanation:
When many repeating simple subunits are joined together, this results into a polymer.
The simplest unit or smallest unit of any substance is called a monomer. When many units of a monomer joins together, a polymer results.
- For proteins, the monomeric unit is amino-acid.
- When they combine they form longer chain molecules called proteins.
- For carbohydrates, the monomeric unit is called glucose.
- When they are combined they give us a wide range of carbohydrate molecules.
Answer:
Diatomic molecules consist of two atoms that are chemically bonded. The two atoms can be the same or different chemical elements. As for whether or not they are compounds, there is not technically an answer. This is because all compounds are molecules, but not all molecules are compounds. For example diatomic molecules that comprise the chemical compounds nitric acid, carbon monoxide, and hydrogen chloride are made up of two different elements. As you can see, most diatomic molecules are not made up of the same kind of elements and not every diatomic molecule comprises a chemical compound.
hope this helps :)
Explanation:
A COVALENT BOND, FORMS BETWEEN ELEMENTS WITH SIMILAR ELECTRONEGATIVITY AS SHARING OF ELECTRON PAIRS BETWEEN ATOMS IS EASIER AS THEY ARE IDENTICAL.
Explanation:
Bonding atoms with similar electronegativity values form covalent bonds.
A covalent bond, also called a molecular bond, is a chemical bond that involves the sharing of electron pairs between atoms.
Covalent bonds form between two nonmetal atoms with identical or relatively close electronegativity values
Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons, also it is the strength an atom has to attract a bonding pair of electrons to itself.
Pure covalent bonds result when two atoms of the same electronegativity bond. This occurs only when two atoms of the same element bond with each other.
Conditions:
Low pressure and low temperature
Low pressure and high temperature
High pressure and low temperature
High pressure and high temperature
NAD serves as the bulk of the oxidative processes in the citric acid cycle's initial electron acceptor.
<h3>What are
electron acceptors in c
itric acid cycle?</h3>
- In the Krebs cycle, which transfers electrons via the electron transport chain with oxygen as the final acceptor, coenzymes like FAD and NAD+ are reduced.
- In a single cycle, three NADH+ and one FADH2 are produced, and when the cycle enters the electron transport chain, 10 ATP is produced.
- The final electron acceptor in the electron transport chain is oxygen. The proton gradient in the intermembrane gap is produced by NADH molecules donating electrons that are then transmitted through a number of different proteins.
<h3>What occurs throughout the citric acid cycle?</h3>
The cycle of citric acid: In the citric acid cycle, a six-carbon citrate molecule is created when an acetyl group from acetyl CoA is joined to a four-carbon oxaloacetate molecule.
Citrate is oxidized over a number of steps, generating two molecules of carbon dioxide for each acetyl group added to the cycle.
learn more about citric acid cycle here
<u>brainly.com/question/14900762</u>
#SPJ4