Answer:
Length = 2.92 m
Diameter = 0.11 mm
Explanation:
We have
, where:
is the length

We divide the first equation by the second equation to get:


Using this Area, we find the diameter of the wire:



To find the length, we multiply the two equations stated initially:


This distance is known as the amplitude of the wave, and is the characteristic height of the wave, above or below the equilibrium position. Normally the symbol A is used to represent the amplitude of a wave. The SI unit of amplitude is the metre (m).
Answer:
Do find the answer in the attachment herein.
Explanation:
From the attached diagram:
I. Activation energy = Activated complex - ∆H(reactants)
Activation energy = 162-140 = 22Kj.
II. ∆H(reaction) = ∆H(products) - ∆H(reactants)
∆H(reaction) = 37 - 140 = -103Kj.
Answer:
Answer in Explanation
Explanation:
Whenever we talk about the gravitational potential energy, it means the energy stored in a body due to its position in the gravitational field. Now, we know that in the gravitational field the work is only done when the body moves vertically. If the body moves horizontally on the same surface in the Earth's Gravitational Field, then the work done on the body is considered to be zero. Hence, the work done or the energy stored in the object while in the gravitational field is only possible if it moves vertically. This vertical distance is referred to as height. <u>This is the main reason why we require height in the P.E formula and calculations.</u>
The derivation of this formula is as follows:
Work = Force * Displacement
For gravitational potential energy:
Work = P.E
Force = Weight = mg
Displacement = Vertical Displacement = Height = h
Therefore,
P.E = mgh