The short answer is that the displacement is equal tothe area under the curve in the velocity-time graph. The region under the curve in the first 4.0 s is a triangle with height 10.0 m/s and length 4.0 s, so its area - and hence the displacement - is
1/2 • (10.0 m/s) • (4.0 s) = 20.00 m
Another way to derive this: since velocity is linear over the first 4.0 s, that means acceleration is constant. Recall that average velocity is defined as
<em>v</em> (ave) = ∆<em>x</em> / ∆<em>t</em>
and under constant acceleration,
<em>v</em> (ave) = (<em>v</em> (final) + <em>v</em> (initial)) / 2
According to the plot, with ∆<em>t</em> = 4.0 s, we have <em>v</em> (initial) = 0 and <em>v</em> (final) = 10.0 m/s, so
∆<em>x</em> / (4.0 s) = (10.0 m/s) / 2
∆<em>x</em> = ((4.0 s) • (10.0 m/s)) / 2
∆<em>x</em> = 20.00 m
Answer:
By preventing the government from taking property without fair payment.
Explanation:
Answer 1
Please mark me as brilliant and thank you
The centripetal acceleration a is 4.32
10^-4 m/s^2.
<u>Explanation:</u>
The speed is constant and computing the speed from the distance and time for one full lap.
Given, distance = 400 mm = 0.4 m, Time = 100 s.
Computing the v = 0.4 m / 100 s
v = 4
10^-3 m/s.
radius of the circular end r = 37 mm = 0.037 m.
centripetal acceleration a = v^2 / r
= (4
10^-3)^2 / 0.037
a = 4.32
10^-4 m/s^2.
Answer:
True
Explanation:
i searched it up and well this thing is making me do it up till 20 characters long so yea