Answer:
14.4kJ
Explanation:
Work = Force x distance
W × h = mgh
Given that,
mass m, = 59.5kg
acceleration due to gravity = 9.8m/s^2
height ,h = 16.2cm
convert to m is 0.162m
How much work = m x g x h
height is 0.162 x 152 steps
h = 24.624m
work = 59.5 x 9.8 x 24.624
= 14,358.25Joule
= 14.4kJ
Answer:
a) 
b) This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).
c) The material is peat, possibly.
d) The material cannot be ice because ice doesn't exists at a temperature of 100°C.
Explanation:
Given:
- mass of aluminium,

- mass of water,

- initial temperature of the system,

- mass of copper block,

- temperature of copper block,

- mass of the other block,

- temperature of the other block,

- final equilibrium temperature,

We have,
specific heat of aluminium, 
specific heat of copper, 
specific heat of water, 
Using the heat energy conservation equation.
The heat absorbed by the system of the calorie-meter to reach the final temperature.



The heat released by the blocks when dipped into water:

where
specific heat of the unknown material
For the conservation of energy : 
so,


b)
This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).
c)
The material is peat, possibly.
d)
The material cannot be ice because ice doesn't exists at a temperature of 100°C.
<span>A-pillar blind spot. A blind spot in a vehicle is an area around the vehicle that cannot be directly observed by the driver while at the controls, under existing circumstances. Blind spots exist in a wide range of vehicles: cars, trucks, motorboats, sailboats. and aircraft.</span>
I say around 40% - 60%
https://www.dmv.ca.gov/portal/dmv/detail/teenweb/more_btn6/traffic/traffic
http://www.teendriversource.org/stats/support_teens/detail/57
http://www.rmiia.org/auto/teens/Teen_Driving_Statistics.asp
(I just corrected the question. Sorry if it is still incorrect.)
Answer:
Explanation:
Mass of ice m = 500g = .5 kg
Heat required to raise the temperature of ice by 10 degree
= mass of ice x specific heat of ice x change in temperature
= .5 x 2093 x 10 J
10465 J
Heat required to melt the ice
= mass of ice x latent heat
0.5 x 334 x 10³ J
167000 J
Heat required to raise its temperature to 18 degree
= mass x specific heat of water x rise in temperature
= .5 x 4182 x 18
=37638 J
Total heat
=10465 +167000+ 37638
=215103 J