Answer:
Step-by-step explanation:
Answer:
I think its true
Step-by-step explanation:
Answer:
x=20
Step-by-step explanation:
form a ratio
28:7
4:1
x:5
x=20
Well I THINK triangle ABC is just a stretched out version of triangle DEF.
To find the area of a triangle, you multiply base and height, and divide by 2.
Area of DEF is 6, so that means that (4 * x)/2 = 6.
6*2 = 12....
4 * x = 12........
4 * 3 = 12.
x = 3.
Comparing DEF to ABC: ABC's base is 3 times as long as DEF's. So that means the height must be three times as long.
3*3 = 9.
(12 * 9)/2 =54
Using the normal distribution, it is found that:
- 3 - a) The 40th percentile of the height of Dinaric Alps distribution for men is of 72.2 inches.
- 3 - b) The minimum height of man in the Dinaric Alps that would place him in the top 10% of all heights is of 76.84 inches.
- 4 - a) The 25th percentile for the math scores was of 71.6 inches.
- 4 - b) The 75th percentile for the math scores was of 78.4 inches.
<h3>Normal Probability Distribution
</h3>
In a <em>normal distribution </em>with mean
and standard deviation
, the z-score of a measure X is given by:
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
Question 3:
- The mean is of 73 inches, hence
.
- The standard deviation is of 3 inches, hence
.
Item a:
The 40th percentile is X when Z has a p-value of 0.4, so <u>X when Z = -0.253</u>.




The 40th percentile of the height of Dinaric Alps distribution for men is of 72.2 inches.
Item b:
The minimum height is the 100 - 10 = 90th percentile is X when Z has a p-value of 0.9, so <u>X when Z = 1.28</u>.




The minimum height of man in the Dinaric Alps that would place him in the top 10% of all heights is of 76.84 inches.
Question 4:
- The mean score is of 75, hence
.
- The standard deviation is of 5, hence
.
Item a:
The 25th percentile is X when Z has a p-value of 0.25, so <u>X when Z = -0.675</u>.




The 25th percentile for the math scores was of 71.6 inches.
Item b:
The 75th percentile is X when Z has a p-value of 0.25, so <u>X when Z = 0.675</u>.




The 75th percentile for the math scores was of 78.4 inches.
To learn more about the normal distribution, you can take a look at brainly.com/question/24663213