Answer:
No, it is not d true light
Explanation:
fruits generally plants need a direct sunlight
Answer:
Exposure time limitation, shielding and distance.
Explanation:
- Limitation of exposure time, since the dose received is directly proportional to the exposure time, so that, at a shorter time, lower dose. For this reason, planning is suggested, to reduce time.
-
Use of shields. This allows a reduction in the dose received by the technician when filtered by the barrier (screen). There are two types of shields or screens, the primary barriers (attenuate the radiation of the primary beam) and the secondary barriers (avoid diffuse radiation).
-
Distance to the radioactive source. The dose received is inversely proportional to the square of the distance to the radioactive source. Therefore, if the distance is doubled, the dose received will decrease by a quarter. Reason for this, it is advisable to use devices or remote controls whenever possible.
Answer:
The maximum no. of electrons- 
Solution:
As per the question:
Maximum rate of transfer of charge, I = 1.0 C/s
Time, t = 1.0 h = 3600 s
Rate of transfer of charge is current, I
Also,

Q = ne
where
n = no. of electrons
Q = charge in coulomb
I = current
Thus
Q = It
Thus the charge flow in 1. 0 h:

Maximum number of electrons, n is given by:

where
e = charge on an electron = 
Thus

Answer:
c. Y
Explanation:
Newton's third law of motion states that action and reaction are equal and opposite. Hence for every action, there is an equal and opposite reaction.
Considering the system of forces shown in the image, W and Y are opposite forces. When the driver slams on the brakes, he will be pushed forward towards the windscreen. The force Y exerted by the seat belt keeps him on the drivers seat by moving him backwards towards the seat.