Answer:
C. you're able to reverse out of the parking spot
Explanation:
Straight-in parking is an approach of parking that allows a more flexible traffic layout where a driver can approach the spot from either direction and still safely park within the lines. It thus helps to prevent blockage of cars. Each car can move in and out freely preventing it from congestion.
 This way of parking can leave you safe when you able to reverse out of the parking spot. It gives you greater control and makes it easier to maneuver out space. The benefits of Straight-in parking are,
- Allows for two-way traffic
- Drivers can line up the vehicle from multiple angles
- Saves time for drivers
 
        
             
        
        
        
Hi!
The main component of all computer memory is RAM.
Hope this helps !
        
                    
             
        
        
        
Answer:
The wavelength of the light is  .
.
Explanation:
Given that,
Distance between the slit centers d= 1.2 mm
Distance between constructive fringes 
Distance between fringe and screen D= 5 m
We need to calculate the wavelength 
Using formula of width

Put the value into the formula




Hence, The wavelength of the light is  .
.
 
        
             
        
        
        
Answer:
d = 68.5 x 10⁻⁶ m = 68.5 μm
Explanation:
The complete question is as follows:
An optical engineer needs to ensure that the bright fringes from a double-slit are 15.7 mm apart on a detector that is  1.70m from the slits. If the slits are illuminated with coherent light of wavelength 633 nm, how far apart should the slits be?
The answer can be given by using the formula derived from Young's Double Slit Experiment:

where,
d = slit separation = ?
λ = wavelength = 633 nm = 6.33 x 10⁻⁷ m
L = distance from screen (detector) = 1.7 m
y = distance between bright fringes = 15.7 mm = 0.0157 m
Therefore,

<u>d = 68.5 x 10⁻⁶ m = 68.5 μm</u>
 
        
             
        
        
        
Answer:
Bounce 1 ,  pass 3,   emb2
Explanation:
(By the way I am also doing that question on College board physics page) For the Bounce arrow, since it bumps into the object and goes back, it means now it has a negative momentum, which means a larger momentum is given to the object. P=mv, so the velocity is larger for the object, and larger velocity means a larger kinetic energy which would result in a larger change in the potential energy. Since K=0.5mv^2=U=mgh, a larger potential energy would have a larger change in height which means it has a larger angle θ with the vertical line. Comparing with the "pass arrow" and the "Embedded arrow", the embedded arrow gives the object a larger momentum, Pi=Pf (mv=(M+m)V), it gives all its original momentum to the two objects right now. (Arrow and the pumpkin), it would have a larger velocity. However for the pass arrow, it only gives partial of its original momentum and keeps some of them for the arrow to move, which means the pumpkin has less momentum, means less velocity, and less kinetic energy transferred into the potential energy, and means less change in height, less θangle.  So it is  Bounce1, pass3, emb2.