Answer:
W= 638.1 J
Explanation:
As we know that
Work done is the area of the force and displacement diagram.
W=∫F.dx
W=Work
F=force
dx=Elemental displacement
From the diagram ,area A
A= 60 x 7.09 + 1/2 x 60 x 7.09
A= 638.1 J
So the work W
W= 638.1 J
Answer:
W and X
Explanation:
When escaping a rip current, one should always walk to the side until you escape from the rip current. If you walk towards the shore, you have the ability to keep getting dragged toward the current, such as with X and Y.
Answer:
83.2 W/m^2
Explanation:
The radiation per unit area of a star is directly proportional to the power emitted, which is given by Stefan-Boltzmann law:

where
is the Stefan-Boltzmann constant
A is the surface area
T is the surface temperature
So, we see that the radiation per unit area is proportional to the fourth power of the temperature:

So in our problem we can write:

where
is the power per unit area of the present sun
is the temperature of the sun
is the power per unit area of sun X
is the temperature of sun X
Solving for I2, we find

Answer:
1.07 nT
Explanation:
We know that E/B = c where E = electric field amplitude = 320 mV/m = 0.32 V/m, B = magnetic field amplitude and c = speed of light = 3 × 10⁸ m/s.
So, B = E/c
Substituting E and c into B, we have
B = E/c
= 0.32 V/m ÷ 3 × 10⁸ m/s
= 0.1067 × 10⁻⁸ T
= 1.067 × 10⁻⁹ T
= 1.067 nT
≅ 1.07 nT
Answer:
They both produce heat energy.