You get the net force acting on it ... the sum of the strengths and directions
of all the individual forces there may be.
Answer:
Object A and C (Second choice)
Let's observe one by one
#A..
Kupier belt is a belt associated at Neptune outerside similar to asteroid belt
#B.
Has enough gravity to keep other objects far away from its orbit
- It's any planet or may be sun /star
No
#C
Is in orbit around the sun
#D
Is almost circular in shape
The only information you would need to decide if the can will float is the density of the can, which requires knowing the mass and volume. If the density of the can is less than one, the can will float. if it is greater than one, it will not float, as water's density is one.
Answer:
A - elastic since many other fast food items could be considered close substitutes.
Explanation:
The price elasticity of demand is how much the demand of the Big Macs will change due to a 1% change in price. Should the elasticity be greater than 1, the Big Macs will be elastic. Should it be less than 1, the Big Macs are inelastic.
Demand elasticity is calculated as the percentage change in quantity demanded divided by a percentage change in price.
Since Big Macs are (i) a luxury good, and (ii) have close substitutes (other burgers available at McDonalds and other fast food stores), we will say their elasticity is greater than 1.
This means that the demand of Big Macs will change due to a 1% increase in price due to the presence of close substitutes.
Answer:
a) p = 4.96 10⁻¹⁹ kg m / s
, b) p = 35 .18 10⁻¹⁹ kg m / s
,
c) p_correst / p_approximate = 7.09
Explanation:
a) The moment is defined in classical mechanics as
p = m v
Let's calculate its value
p = 1.67 10⁻²⁷ 0.99 3. 10⁸
p = 4.96 10⁻¹⁹ kg m / s
b) in special relativity the moment is defined as
p = m v / √(1 –v² / c²)
Let's calculate
p = 1.67 10⁻²⁷ 0.99 10⁸/ √(1- 0.99²)
p = 4.96 10⁻¹⁹ / 0.141
p = 35 .18 10⁻¹⁹ kg m / s
c) the relationship between the two values is
p_correst / p_approximate = 35.18 / 4.96
p_correst / p_approximate = 7.09