Compute the derivative of <em>y</em> = (<em>x</em>² + <em>x</em> - 2)² using the chain rule:
d<em>y</em>/d<em>x</em> = 2 (<em>x</em>² + <em>x</em> - 2) d/d<em>x</em> [<em>x</em>² + <em>x</em> - 2]
d<em>y</em>/d<em>x</em> = 2 (<em>x</em>² + <em>x</em> - 2) (2<em>x</em> + 1)
Evaluate the derivative at <em>x</em> = -1 :
d<em>y</em>/d<em>x</em> (-1) = 2 ((-1)² + (-1) - 2) (2 (-1) + 1) = 4
This is the slope of the tangent line to the function at (-1, 4).
Use the point-slope formula to get the equation for the tangent line:
<em>y</em> - 4 = 4 (<em>x</em> - (-1)) → <em>y</em> = 4<em>x</em> + 8
Answer:
114.75
Step-by-step explanation:
You just multiply 25.50 by 4.50 :))
Hope this helps and sorry if I'm wrong.
Have a wonderful rest of your day. <3
Answer:
a = 9
Step-by-step explanation:
First we need to add (x^2+3x) to (3x^2+ax),
(x^2+3x)+(3x^2+ax)
Expand
= x^2+3x+3x^2+ax
Collect the like terms
= x^2+3x^2+3x+ax
= 4x^2 + 3x + ax
= 4x^2+(3+a)x
Equate the solution to 4x^2+12x
4x^2+(3+a)x = 4x^2+12x
Comparing the like terms on both sides
(3+a)x =12x
3 + a = 12
a = 12 - 3
a = 9
Hence the value of a is 9
Answer:
y = 8x-37
Step-by-step explanation:
y=mx+c
We know the slope m
y=8x+c
We know a point on the line (5,3). Substitute this in for x and y
3 = 8(5) +c
3 = 40+c
3-40 = 40+c-40
-37 =c
y = 8x-37