Answer:
0=x
Step-by-step explanation:
9-(6x+1)=3x+8
9-6x-1=3x+8
9-8-1=3x+6x
9-9=9x
0=9x
0÷9=x
0=x
Answer:
Area =
b1 + b2
×h
2
=
2 + 6
× 5
2
=
20 centimeters2
Step-by-step explanation:
9514 1404 393
Answer:
19 players
Step-by-step explanation:
The total being spent is ...
bus cost + (per player cost) × (number of players) = total raised
250 + 25.85p = 741.15
25.85p = 491.15
p = 491.15/25.85 = 19
The team could bring 19 players to the tournament.
Rocco would have to run diagonally 27 times
Answer:
Infinite number of solutions.
Step-by-step explanation:
We are given system of equations



Firs we find determinant of system of equations
Let a matrix A=
and B=![\left[\begin{array}{ccc}-1\\1\\-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%5C%5C1%5C%5C-3%5Cend%7Barray%7D%5Cright%5D)


Determinant of given system of equation is zero therefore, the general solution of system of equation is many solution or no solution.
We are finding rank of matrix
Apply
and 
:![\left[\begin{array}{ccc}-5\\1\\-5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C1%5C%5C-5%5Cend%7Barray%7D%5Cright%5D)
Apply
:![\left[\begin{array}{ccc}-5\\6\\-5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C6%5C%5C-5%5Cend%7Barray%7D%5Cright%5D)
Apply 
:![\left[\begin{array}{ccc}-5\\6\\1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C6%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
Apply
and 
:![\left[\begin{array}{ccc}-5\\\frac{13}{2}\\-\frac{1}{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C%5Cfrac%7B13%7D%7B2%7D%5C%5C-%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Apply 
:![\left[\begin{array}{ccc}-\frac{9}{2}\\\frac{13}{2}\\-\frac{1}{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Cfrac%7B9%7D%7B2%7D%5C%5C%5Cfrac%7B13%7D%7B2%7D%5C%5C-%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Rank of matrix A and B are equal.Therefore, matrix A has infinite number of solutions.
Therefore, rank of matrix is equal to rank of B.