Answer:
i.e belongs to same group because of valence electrons are same
Explanation:
so it has same chemical behaviour. and q has more energy than r ionisation energy decreases from top to bottom
Answer:
Diamond
Explanation:
Diamond has covalent bonds, which makes it a non-metal.
However, it also has a tetrahedral structure, which holds its C atoms together by strong forces, thus making it hard.
Diamond also has free-moving electrons due to its tetrahedral structure, thus making it possible to conduct electricity.
<h3>
Answer:</h3>
915 Joules
<h3>
Explanation:</h3>
- The heat of fusion is the heat that is required to convert a given mass of a substance from solid state to liquid state without change in temperature.
- In this case, we are given specific heat of a substance as 122 joules per gram
- It means that amount of heat equivalent to 122 joules is required to change 1 gram of the substance from solid state to liquid state.
- Therefore, we can determine the amount of heat needed to change 7.5 grams of the substance from solid to liquid state.
1 g = 122 Joules
7.5 g = ?
= 122 × 7.5
= 915 Joules
Thus, 7.5 g of the substance at its melting point will require 915 Joules of heat to melt.
Answer:
B. It is important that people are not harmed for the sake of science.
Explanation:
Ethical principles stress the need to do good and cause no harm.A researcher is therefore required to;
- obtain an informed consent from the participants
- minimize or eliminate risk of harm to participants
- protect the anonymity and confidentiality of participants
- Apply no deceptive techniques
- allow the right to withdraw from the study by a participant
If a sample of gas is a 0.622-gram, volume of 2.4 L at 287 K and 0.850 atm. Then the molar mass of the gas is 7.18 g/mol
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates to the macroscopic properties of ideal gases.
An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Given :
The ideal gas equation is given below.
n = PV/RT
n = 86126.25 x 0.0024 / 8.314 x 287
n = 0.622 / molar mass (n = Avogardos number)
Molar mass = 7.18 g
Hence, the molar mass of a 0.622-gram sample of gas having a volume of 2.4 L at 287 K and 0.850 atm is 7.18 g
More about the ideal gas equation link is given below.
brainly.com/question/4147359
#SPJ1