Answer:
7/3
Step-by-step explanation:
or, 3x/4 - 7/8 = 7/8
or, 3x/4=7/8+7/8
or, 3x/4 = (7+7)/8
or, 3x/4 = 14/8
or, 3x = (14/8)*4
or, 3x=56/8
or, 3x= 7
or, x=7/3
Answer:
2.35%
Step-by-step explanation:
Mean number of months (M) = 39 months
Standard deviation (S) = 10 months
According to the 68-95-99.7 rule, 95% of the data is comprised within two standard deviations of the mean (39-20 to 39+20 months), while 99.7% of the data is comprised within two standard deviations of the mean (39-30 to 39+30 months).
Therefore, the percentage of cars still in service from 59 to 69 months is:

The approximate percentage of cars that remain in service between 59 and 69 months is 2.35%.
Irrational numbers are the subset of real numbers that are not at all connected to the rest of numbers.
The subsets of real numbers are natural numbers, whole numbers, integers, rational numbers and irrational numbers.
Natural numbers are subset of whole numbers, which are subset of integers, which are subset of rational numbers. Hence, all of them are interconnected. The set of irrational numbers is the only subset of real numbers which is not associated with the rest.
For example:-
1 is a natural number, whole number, integer, rational number but not irrational number. On the other hand,
is an irrational number but none of the rest.
To learn more about real numbers, here:-
brainly.com/question/551408
#SPJ4
When you have this type of problem, you need to combine the like-terms and isolate the variable.
3x + 122 = 22x - 11
Add 11 to both sides to get rid of it
3x + 122 + 11 = 22x - 11 + 11 (-11 + 11=0)
3x + 133 = 22x
Then you would bring the 3x to the other side, so subtract 3x from both sides
3x + 133 = 22x
-3x -3x
133 = 22x - 3x
133 = 19x
Then divide both sides by 19 to isolate x
133/19 = 19x/19
133/19 = 7, so x = 7
Hope this helps!!
Answer:
Option: A is the correct answer.
The number of weeds is decreasing by a multiplicative rate.
Step-by-step explanation:
Clear;y from the scatter plot we could observe that with the increasing value of one variable the other variable is decreasing.
Hence, The number of weeds is decreasing.
Also as we could see that the line of best fit is a curve and not a line Hence, the number of weeds are not decreasing by a additive rate ( since the rate or a slope of a line is constant) it is decreasing by a multiplicative rate.
<em>Based on the graph of a regression model:</em>
<em>Option: A is correct.</em>